GIẢI TOÁN 11 BẰNG MÁY TÍNH CẦM TAY - Tài Liệu Text - 123doc

Tải bản đầy đủ (.ppt) (50 trang)
  1. Trang chủ
  2. >>
  3. Giáo án - Bài giảng
  4. >>
  5. Toán học
GIẢI TOÁN 11 BẰNG MÁY TÍNH CẦM TAY

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (191.97 KB, 50 trang )

giải toán lớp 11trêN máY tính CầM TAY1 giải toán lớp 11trêN máY tính CầM TAY1. Biểu thức số2. Hàm số3. Phơng trình lợng giác4. Tổ hợp5. Xác suất6. DÃy số và giới hạn của dÃy số7. Hàm số liên tục8. Đạo hàm và giới hạn của hàm sè2 giải toán lớp 11trêN máY tính CầM TAYQuy ớc. Khi tính gần đúng, chỉ ghi kết quả đÃlàm tròn với 4 chữ số thập phân. Nếu là số đo gócgần đúng tính theo độ, phút, giây thì lấy đến sốnguyên gi©y.3 giải toán lớp 11trêN máY tính CầM TAY1. Biểu thức sốMáy tính giúp ta tính giá trị (nói chung là gầnđúng) của biểu thức số bất kỳ nếu ta nhập chính xácbiểu thức đó vào máy.4 giải toán lớp 11trêN máY tính CầM TAY1. Biểu thức sốBài toán 1.1. Tính giá trị của các biểu thức sau:A = cos750cos150;B = cos(2π/9) ) cos(4π/9) ) cos(8π/9) ) ;C=1/sin180-1/sin540 +tan90-tan270-tan630+tan810.VINACALKQ: A = 1/4; B = - 1/8; C = 6.5 giải toán lớp 11trêN máY tính CầM TAY1. Biểu thức sốBài toán 1.2. Tính gần đúng giá trị của các biÓuthøc sau:A = cos750 sin150; B = sin750cos150;C = sin(5π/24) ) sin(π/24) ).VINACALKQ: A ≈ 0,0670; B ≈ 0,9330; C ≈ 0,0795. 0,0670; B ≈ 0,0670; B ≈ 0,9330; C ≈ 0,0795. 0,9330; C ≈ 0,0670; B ≈ 0,9330; C ≈ 0,0795. 0,0795.6 giải toán lớp 11trêN máY tính CầM TAY1. Biểu thức sốBài toán 1.3. Tính gần đúng giá trị của biểuthức A = 1 + 2cosα + 3cos + 3cos2α + 3cos + 4cos3α + 3cos nÕu α + 3cos lµgãc nhän mµ sinα + 3cos + cosα + 3cos = 0,5.Góc nhọn tuy được xác định từ điều kiện tuy đợc xác định từ điều kiệnsin tuy được xác định từ điều kiện + cos tuy được xác định từ điều kiện = 0,5 nhng nó cha có sẵn dới dạnghiện. Do đó, thông thờng ta cần tính giá trị củagóc nhọn tuy được xác định từ điều kiện . Vì biểu thức A là một hàm số củacos tuy được xác định từ điều kiện nên ta chỉ cần tính giá trị của cos tuy được xác định từ điều kiện .7 giải toán lớp 11trêN máY tính CầM TAY1. Biểu thức sốBài toán 1.3. Tính gần đúng giá trị của biểuthức A = 1 + 2cosα + 3cos + 3cos2α + 3cos + 4cos3α + 3cos nÕu α + 3cos lµgãc nhän mµ sinα + 3cos + cosα + 3cos = 0,5.sin tuy được xác định từ điều kiện = 0,5 - cos tuy được xác định từ điều kiện ,1 - cos2 tuy được xác định từ điều kiện = 0,25 - cos tuy được xác định từ điều kiện + cos2 tuy được xác định từ ®iỊu kiƯn 2x2 - x - 0,75 = 0, 0 x = cos tuy được xác định từ điều kiÖn ≤ 1,x ≈ 0,0670; B ≈ 0,9330; C ≈ 0,0795. 0,911437827A = 1+ 2x + 3x2 + 4x3. VINACALKQ: A ≈ 0,0670; B ≈ 0,9330; C ≈ 0,0795. 8,3436.8 giải toán lớp 11trêN máY tính CầM TAY1. Biểu thức sốBài toán 1.4. Cho góc nhọn + 3cos thoả m·n hÖthøc sinα + 3cos + 2cosα + 3cos = 4/3. Tính gần đúng giá trịcủa biểu thứcS = 1 + sinα + 3cos + 2cos2α + 3cos + 3sin3α + 3cos + 4cos4 + 3cos.sin tuy được xác định từ điều kiện = 4/3 - 2cos tuy được xác định từ điều kiện 1 - cos2 tuy được xác định từ điều kiện = 16/9 - 16/3 cos tuy được xác định từ điều kiện + 4cos2 tuy được xác định từ điều kiện 5cos2 tuy được xác định từ điều kiện - 16/3 cos tuy được xác định từ điều kiện + 7/9 = 09 giải toán lớp 11trêN máY tính CầM TAY1. Biểu thức sốBài toán 1.4. Cho góc nhọn + 3cos thoả m·n hÖthøc sinα + 3cos + 2cosα + 3cos = 4/3. Tính gần đúng giá trịcủa biểu thứcS = 1 + sinα + 3cos + 2cos2α + 3cos + 3sin3α + 3cos + 4cos4 + 3cos.cos tuy được xác định tõ ®iỊu kiƯn 1 ≈ 0,0670; B ≈ 0,9330; C ≈ 0,0795. 0,892334432; cosα tuy được xác định từ điều kiện 2 0,0670; B ≈ 0,9330; C ≈ 0,0795. 0,174322346 tuy được xác định từ điều kiện 1 0,0670; B ≈ 0,9330; C ≈ 0,0795. 0,468305481; tuy được xác định từ điều kiÖn 2 ≈ 0,0670; B ≈ 0,9330; C ≈ 0,0795. 1,395578792VINACALKQ: S1 ≈ 0,0670; B ≈ 0,9330; C ≈ 0,0795. 5,8560; S2 ≈ 0,0670; B ≈ 0,9330; C ≈ 0,0795. 4,9135.10 giải toán lớp 11trêN máY tính CầM TAY2. Hàm sốKhi cần tính giá trị của một hàm số tại mộtsố giá trị khác nhau của đối số, ta nhập biểu thứccủa hàm số vào máy rồi dùng phím CALC đểyêu cầu máy lần lợt tính (gần đúng) từng giá trịđó.11 giải toán lớp 11trêN máY tính CầM TAY2. Hàm sốBài toán 2.1. Tính gần đúng giá trị của hàm sốf(x) = (2sin2x+(3+31/2)sinxcosx+(31/2-1)cos2x)/(5tanx-2cotx+sin2(x/2)+cos2x+1)t¹i x = - 2; π/6; 1,25; 3π/5.VINACALKQ: f(-2) ≈ 0,0670; B ≈ 0,9330; C ≈ 0,0795. 0,3228; f(π/6) ≈ 0,0670; B ≈ 0,9330; C ≈ 0,0795. 3,1305;f(1,25) ≈ 0,0670; B ≈ 0,9330; C ≈ 0,0795. 0,2204; f(3π/5) ≈ 0,0670; B ≈ 0,9330; C ≈ 0,0795. - 0,0351.12 giải toán lớp 11trêN máY tính CầM TAY2. Hàm sốBài toán 2.2. Tính gần đúng giá trị lớn nhất vàgiá trị nhỏ nhất của hàm sốf(x) = cos2x + 31/2 cosx - 21/2.f(x) = 2cos2x - 1 + 31/2 cosx - 21/2g(t) = 2t2 + 31/2 t - 1 - 21/2, - 1 ≤ t = cosx ≤ 1g’(t) = 4t + 31/2, - 1≤ t ≤ 1g’(t) = 0 <=> t = - 31/2/413 giải toán lớp 11trêN máY tính CầM TAY2. Hàm sốBài toán 2.2. Tính gần đúng giá trị lớn nhất vàgiá trị nhỏ nhất của hàm sốf(x) = cos2x + 31/2 cosx - 21/2.g(-1) ≈ 0,0670; B ≈ 0,9330; C ≈ 0,0795. - 2,14626437;g(1) ≈ 0,0670; B ≈ 0,9330; C ≈ 0,0795. 1,317837245;g(-31/2/4) ≈ 0,0670; B ≈ 0,9330; C ≈ 0,0795. - 2,789213562KQ: max f(x) ≈ 0,0670; B ≈ 0,9330; C ≈ 0,0795. 1,3178; min f(x) ≈ 0,0670; B ≈ 0,9330; C ≈ 0,0795. - 2,7892.14 giải toán lớp 11trêN máY tính CầM TAY2. Hàm sốBài toán 2.3. Tính gần đúng giá trị lớn nhất vàgiá trị nhỏ nhất của hàm sốy = (sinx + 2cosx)/(3cosx + 4).Đây là một hàm số tuần hoàn với chu kỳ 2 .Chỉ cần xét giá trị của nó tại x thuộc một đoạn cóđộ dài bằng chu kỳ, chẳng hạn đoạn [0; 2].15 giải toán lớp 11trêN máY tính CầM TAY2. Hàm sốBài toán 2.3. Tính gần đúng giá trị lớn nhất vàgiá trị nhỏ nhất của hàm sốy = (sinx + 2cosx)/(3cosx + 4).Vì đạo hàm của hàm số này lày = (3 - 8sinx + 4cosx)/(3cosx + 4)2nên việc tìm các nghiệm của đạo hàm trên đoạn[0; 2] có khó khăn hơn (phải giải phơng trình3 - 8sinx + 4cosx = 0).16 giải toán lớp 11trêN máY tính CầM TAY2. Hàm sốBài toán 2.3. Tính gần đúng giá trị lớn nhất và giá trịnhỏ nhất của hàm số y = (sinx + 2cosx)/(3cosx + 4).Ta xét tập giá trị của hàm số nµy.3ycosx + 4y = sinx + 2cosxsinx + (2 - 3y)cosx = 4y12 + (2 - 3y)2 ≥ (4y)27y2 + 12y - 5 ≤ 0- 2,060878539 ≈ 0,0670; B ≈ 0,9330; C ≈ 0,0795. y1 ≤ y ≤ y2 ≈ 0,0670; B ≈ 0,9330; C ≈ 0,0795. 0,346592824KQ: max f(x) ≈ 0,0670; B ≈ 0,9330; C ≈ 0,0795. 0,3466; min f(x) ≈ 0,0670; B ≈ 0,9330; C ≈ 0,0795. - 2,0609.17 giải toán lớp 11trêN máY tính CầM TAY3. Phơng trình lợng giácMáy tính giúp ta tìm đợc giá trị (gần đúng) của:- Góc tuy được xác định từ điều kiện , - /2 tuy được xác định từ điều kiện /2 hoặc - 900 tuy được xác định từ điều kiện 900, khibiết sin tuy được xác định từ điều kiện (sử dụng phím sin- 1).- Góc tuy được xác định từ điều kiện , 0 tuy được xác định từ điều kiện hoặc 00 tuy được xác định từ điều kiện 1800, khi biếtcos tuy được xác định từ ®iỊu kiƯn (sư dơng phÝm cos- 1).- Gãc α tuy được xác định từ điều kiện , - /2 < tuy được xác định từ điều kiện < /2 hoặc - 900 < tuy được xác ®Þnh tõ ®iỊu kiƯn < 900, khibiÕt tanα tuy được xác định từ điều kiện (sử dụng phím tan- 1).Việc giải phơng trình lợng giác trên máy tính cầmtay quy về việc tìm góc tuy được xác định từ điều kiện khi biết một trong các giá trị lợng giác của nó.18 giải toán lớp 11trêN máY tính CầM TAY3. Phơng trình lợng giácBài toán 3.1. Tìm nghiệm gần đúng của phơngtrình sinx = 2/3.sinA = 2/3x1 = A + k2π; x2 = π - A + k2πVINACALKQ: x1 ≈ 0,0670; B ≈ 0,9330; C ≈ 0,0795. 0,7297 + k2π;x2 ≈ 0,0670; B ≈ 0,9330; C ≈ 0,0795. - 0,7297 + (2k + 1) π.19 giải toán lớp 11trêN máY tính CầM TAY3. Phơng trình lợng giácBài toán 3.2. Tìm nghiệm gần đúng (độ, phút,giây) của phơng trình 2sinx - 4cosx = 3.sinx.1/51/2 - cosx.2/51/2 = 3/(2.51/2)cosA = 1/51/2, sinB = 3/(2.51/2)sin(x - A) = sinBx1 = A + B + k3600; x2 = A + 1800 - B + k3600VINACALKQ: x1≈ 0,0670; B ≈ 0,9330; C ≈ 0,0795.110505033’55”+k3600; x2≈ 0,0670; B ≈ 0,9330; C ≈ 0,0795.220101018’16”+k360200.

Trích đoạn

  • KQ:KQ: C C 2
  • Hàm số liên tục

Tài liệu liên quan

  • Giai toan 11 bang may tinh casio Giai toan 11 bang may tinh casio
    • 49
    • 3
    • 105
  • Giải toán 11 bằng máy tính FX - Casio 570Ms Giải toán 11 bằng máy tính FX - Casio 570Ms
    • 33
    • 1
    • 32
  • Giai toan 12 tren may tinh cam tay Giai toan 12 tren may tinh cam tay
    • 26
    • 602
    • 7
  • GIẢI TOÁN 11 BẰNG MÁY TÍNH CẦM TAY GIẢI TOÁN 11 BẰNG MÁY TÍNH CẦM TAY
    • 50
    • 2
    • 69
  • Phần I: Hướng dẫn giải số phức bằng máy tính cầm tay Phần I: Hướng dẫn giải số phức bằng máy tính cầm tay
    • 11
    • 31
    • 180
  • ĐẠO HÀM VÀ GIẢI PHƯƠNG TRÌNH BẰNG MÁY TÍNH CẦM TAY ĐẠO HÀM VÀ GIẢI PHƯƠNG TRÌNH BẰNG MÁY TÍNH CẦM TAY
    • 5
    • 23
    • 106
  • Giải toán 11 bằng máy tính casio fx570 Giải toán 11 bằng máy tính casio fx570
    • 33
    • 3
    • 59
  • Hướng dẫn giải toán THCS trên máy tính cầm tay Hướng dẫn giải toán THCS trên máy tính cầm tay
    • 51
    • 3
    • 53
  • tiet 56 thuc hanh giai pt bac2 bang may tinh cam tay tiet 56 thuc hanh giai pt bac2 bang may tinh cam tay
    • 2
    • 500
    • 1
  • GIẢI TOÁN THCS TRÊN MÁY TÍNH CẦM TAY GIẢI TOÁN THCS TRÊN MÁY TÍNH CẦM TAY
    • 13
    • 690
    • 6

Tài liệu bạn tìm kiếm đã sẵn sàng tải về

(365.5 KB - 50 trang) - GIẢI TOÁN 11 BẰNG MÁY TÍNH CẦM TAY Tải bản đầy đủ ngay ×

Từ khóa » Bấm Máy Toán 11