Giải Toán 8 Bài 12. Hình Vuông - Giải Bài Tập

Giải Bài Tập

Giải Bài Tập, Sách Giải, Giải Toán, Vật Lý, Hóa Học, Sinh Học, Ngữ Văn, Tiếng Anh, Lịch Sử, Địa Lý

  • Home
  • Lớp 1,2,3
    • Lớp 1
    • Giải Toán Lớp 1
    • Tiếng Việt Lớp 1
    • Lớp 2
    • Giải Toán Lớp 2
    • Tiếng Việt Lớp 2
    • Văn Mẫu Lớp 2
    • Lớp 3
    • Giải Toán Lớp 3
    • Tiếng Việt Lớp 3
    • Văn Mẫu Lớp 3
    • Giải Tiếng Anh Lớp 3
  • Lớp 4
    • Giải Toán Lớp 4
    • Tiếng Việt Lớp 4
    • Văn Mẫu Lớp 4
    • Giải Tiếng Anh Lớp 4
  • Lớp 5
    • Giải Toán Lớp 5
    • Tiếng Việt Lớp 5
    • Văn Mẫu Lớp 5
    • Giải Tiếng Anh Lớp 5
  • Lớp 6
    • Soạn Văn 6
    • Giải Toán Lớp 6
    • Giải Vật Lý 6
    • Giải Sinh Học 6
    • Giải Tiếng Anh Lớp 6
    • Giải Lịch Sử 6
    • Giải Địa Lý Lớp 6
    • Giải GDCD Lớp 6
  • Lớp 7
    • Soạn Văn 7
    • Giải Bài Tập Toán Lớp 7
    • Giải Vật Lý 7
    • Giải Sinh Học 7
    • Giải Tiếng Anh Lớp 7
    • Giải Lịch Sử 7
    • Giải Địa Lý Lớp 7
    • Giải GDCD Lớp 7
  • Lớp 8
    • Soạn Văn 8
    • Giải Bài Tập Toán 8
    • Giải Vật Lý 8
    • Giải Bài Tập Hóa 8
    • Giải Sinh Học 8
    • Giải Tiếng Anh Lớp 8
    • Giải Lịch Sử 8
    • Giải Địa Lý Lớp 8
  • Lớp 9
    • Soạn Văn 9
    • Giải Bài Tập Toán 9
    • Giải Vật Lý 9
    • Giải Bài Tập Hóa 9
    • Giải Sinh Học 9
    • Giải Tiếng Anh Lớp 9
    • Giải Lịch Sử 9
    • Giải Địa Lý Lớp 9
  • Lớp 10
    • Soạn Văn 10
    • Giải Bài Tập Toán 10
    • Giải Vật Lý 10
    • Giải Bài Tập Hóa 10
    • Giải Sinh Học 10
    • Giải Tiếng Anh Lớp 10
    • Giải Lịch Sử 10
    • Giải Địa Lý Lớp 10
  • Lớp 11
    • Soạn Văn 11
    • Giải Bài Tập Toán 11
    • Giải Vật Lý 11
    • Giải Bài Tập Hóa 11
    • Giải Sinh Học 11
    • Giải Tiếng Anh Lớp 11
    • Giải Lịch Sử 11
    • Giải Địa Lý Lớp 11
  • Lớp 12
    • Soạn Văn 12
    • Giải Bài Tập Toán 12
    • Giải Vật Lý 12
    • Giải Bài Tập Hóa 12
    • Giải Sinh Học 12
    • Giải Tiếng Anh Lớp 12
    • Giải Lịch Sử 12
    • Giải Địa Lý Lớp 12
Trang ChủLớp 8Giải Bài Tập Toán 8Giải Bài Tập Toán 8 Tập 1Bài 12. Hình vuông Giải toán 8 Bài 12. Hình vuông
  • Bài 12. Hình vuông trang 1
  • Bài 12. Hình vuông trang 2
  • Bài 12. Hình vuông trang 3
  • Bài 12. Hình vuông trang 4
  • Bài 12. Hình vuông trang 5
  • Bài 12. Hình vuông trang 6
§12. Hình vuông A. Tóm tắt kiến thức Định nghĩa Hình vuông là tứ giác có bốn góc vuông và có bốn cạnh bằng nhau. ABrnuunU /a = B = C = D = 90° Tứ giác ABCD là hình vuông o 4 AB = BC = CD = DA. Tính chất Hình vuông có tất cả các tính chất của hình chữ nhật và hình thoi. Dâu hiệu nhận biết Hình chữ nhật có hai cạnh kề bằng nhau là hình vuông. Hình chữ nhật có hai đường chéo vuông góc là hình vuông. Hình chữ nhật có một đường chéo là đường phân giác của một góc là hình vuông. Hình thoi có một góc vuông là hình vuông. Hình thoi có hai đường chéo bằng nhau là hình vuông. B. Ví dụ giải toán Ví dụ. Cho hình vuông ABCD. Trên cạnh BC lấy điểm E, trên tia đối của tia DC lấy điểm F sao cho BE - DF. Gọi M là trung điểm của EF. Vẽ điểm G đối xứng với A qua M. Chứng minh rằng: Tứ giác AEGF là hình vuông; Ba điểm B, M, D thẳng hàng. Giải, a) Tứ giác AEGF có: ME - MF; MG = MA nên nó là hình bình hành. AABE = AADF (c.g.c), suy ra AE = AF và Ai.= A2. Ta có Â2 + DAE = Â| + DAE , do đó ỂÃẼ = BAD = 90° Hình bình hành AEGF có một góc vuông nên là hình chữ nhật. Hình chữ nhật này có hai cạnh kề bằng nhau nên là hình vuông. Ta có MA = ịEF;MC = ịEF, 2 2 đo đó MA = MC (1) Mặt khác BA = BC (2) DA = DC (3) Từ (1), (2), (3) suy ra ba điểm M, B, D thẳng hàng vì cùng nằm trên đường trung trực của AC. Nhận xét: Trong lời giải trên, để chứng minh một tứ giác Ịà hình vuông ta chứng minh tứ giác đó là hình bình hành, rồi hình chữ nhật, cuối cùng là hình vuông. Ta cũng có thể đi theo con đường khác: Trước hết chứng minh tứ giác là hình bình hành rồi hình thoi, cuối cùng là hình vuông. c. Hướng dẫn giải các bài tập trong sách giáo khoa Bài 79. Hướng dẫn: Vận dụng định lí Py-ta-go vào tam giác vuông cân. Đáp số: a) VĨ8 cm; b) V2 dm. Bài 80. Lời giải. Tâm đối xứng của hình vuông là giao điểm hai đường chéo của nó (vì hình vuông là hình bình hành). Trục đối xứng của hình vuông gồm: Hai đường chéo của nó (vì hình vuông là hình thoi). Hai đường thẳng đi qua trung điểm của hai cặp cạnh đối (vì hình vuông là hình chữ nhật). Tõm lại, hình vuông có một tâm đối xứng và bốn trục đối xứng. Bài 81. Lời giải. Tứ giác AEDF có ba góc vuông nên là hình chữ nhật. Hình chữ nhật này có đường chéo AD là đường phân giác của góc A nên là hình vuông. Bài 82. Lờ? giải. Bốn tam giác vuông AEH, BFE, CGF, DHG bằng nhau (c.g.c), suy ra HE = EF = FG = GH và AEH = BFE Ta có ẤẼH + BEF = BFE + BEF = 90° , suy ra HEF = 180°- 90° = 90°, Tứ giác EFGH có bốn cạnh bằng nhau nên là hình thoi. Hình thoi này có E = 90° nên là hình vuông. Bài 83. Trả lời: a) Sai; b) Đúng; c) Đúng; d) Sai; e) Đúng. Bài 84. Lời giải, a) Tứ giác AEDF có DE // AB; DF // AC nên nó là hình bình hành. Hình bình hành AEDF là hình thoi, suy ra A| = Aỉ và D là giao điểm của tia phân giác góc A với cạnh BC. Nếu AABC vuông tại A thì hình bình hành AEDF là hình chữ nhật. Nếu AABC vuông tại A và điểm D là giao điểm của tia phân giác góc A với cạnh BC thì hình bình hành AEDF là hình vuông. Bài 85. Lời giải, a) Ta có AE // DF và AE = DF (cùng bằng — AB) nên tứ giác ADFE là hình bình hành. Hình bình hành này có A = 90° nên là hình chữ nhật. Mặt khác AD = AE (cùng bằng ^-AB) nên hình chữ nhật AEFD là hình vuông. Tứ giác EBFD có EB = DF, EB // DF nên là hình bình hành, suy ra DE // BF. Chứng minh tương tự ta được AF // EC. Do đó tứ giác MENF là hình bình hành. Ta có ME - MF và ME ± MF (tính chất đường chéo hình vuông). Hình bình hành MENF có ME = MF nên là hình thoi, lại có M - 90° nên là hình vuông. Bài 86. Lời giải. Tứ giác nhân được là hình thoi vì có bốn cạnh bằng nhau (cùng bằng AB). Nếu có thêm OA = OB thì hình thoi nhận được có hai đường chéo bằng nhau nên là hình vuông. D. Bài tập luyện thêm Cho hình vuông ABCD. Vẽ tam giác đều ABM vào trong hình vuông và tam giác đều BCN ra ngoài hình vuông. Chứng minh rằng ba điểm D, M, N thẳng hàng. Cho hình vuông ABCD, hai đường chéo cắt nhau tại o. Qua ọ vẽ đường thẳng d bất kì. Gọi A' và B' lần lượt là hình chiếu của A và B trên d. Chứng minh rằng tổng AA' + BB' không đổi. Cho tam giác ABC vuông cân tại A. Trên cạnh BC lấy hai điểm M và N sao cho BM = CN < ^. Vẽ MQ 1 BC; NP i BC (Q e AB, p e AC). Chứng minh rằng tứ giác MNPQ là hình chữ nhật. Xác định vị trí của M và N để MNPQ là hình vuông. Cho hình vuông ABCD. Lấy điểm M thuộc đường chéo AC. Vẽ ME 1 AD và MF 1 CD. Chứng minh rằng tổng ME + MF không đổi khi M di động trên đường chéo AC. Chứng minh rằng BE = AF và BE ± AF. Điểm M ở vị trí nào trên AC thì tứ giác MEDF là hình vuông. Cho tam giác ABC cân tại A, đường cao AH bằng cạnh đáy BC. Vẽ HD 1 AC; BE 1 HD và AF 1 BE. Chứng minh rằng tứ giác ADEF là hình vuông. Hình 1.114 + 45° =180°, suy ra ba điểm D, M, Lời giải, hướng dẫn, đáp số AABM đều, suy ra A| = 60° đó Ấ2 =30°. AADM cân tại A, A2 = 30° Ml =75°. ABMN vuông cân nên M3 = 45° Do đó M1+M2+M3 =75°+60' N thẳng hàng. Hình 1.115 Ta có OA = OB và OA ± OB (tính chất đường chéo hình vuông) Ai = Ôi (cùng phụ với O2). AAA'O = AOB'B (cạnh huyền, góc nhọn) Suy ra AA' = OB'. Xét AOB'B vuông tại B, ta có: OB'2 + BB'2 = OB2hay AA'2 + BB'2 = OB2(khồng đổi). a) AQBM = APCN (g.c.g), suy ra QM = PN. Hình 1.116 Mặt khác QM // PN (cùng vuông góc với BC). Do đó tứ giác MNPQ là hình bình hành. Hình bình hành này có M = 90° nên là hình chữ nhật. b) AQBM có M = 90° , B = 45° nên là tam giác vuông cân, suy ra MB = MQ. Hình chữ nhật MNPQ là hình vuông khi MQ = MN BM = MN = NC BM = CN = 4 BC. a) Tứ giác DEMF là hình chữ nhật nên ME = DF. Tam giác MFC vuông cân tại F nên MF = FC. Do đó ME + MF = DF + FC= DC (không đổi) b) Giả sử AC cắt BD tại o, AC cắt BE tại 0'. Tam giác AEM vuông cân nên AE = EM - DF, AABE = ADAF (c.g.c), suy ra BE = AF và A . B Ê, = F,. Xét AADF vuông tại F có A| + Êi = 90° , do đó Ai + Êi = 90° , suy ra o' = 90° , tức là E BE 1 AF. Hình chữ nhật MEDF là hình vuông khi ME = MF M trùng với giao điểm o của Hinh 1117 hai đường chéo AC và BD. Hình 1.118 Tứ giác ADEF có ba góc vuông nên là hình chữ nhật. Gọi M là trung điểm của AH. Từ (1), (2), (3) suy ra AD = DE, do đó hình chữ nhật ADEF là hình vuông. Nhận xét: Bài toán trên cho ta cách dựng hình vuông ADEF biết đỉnh A và trung điểm H của cạnh hình vuông không chứa A.

Các bài học tiếp theo

  • Ôn tập chương I
  • Bài 1. Đa giác. Đa giác đều
  • Bài 2. Diện tích hình chữ nhật
  • Bài 3. Diện tích tam giác
  • Bài 4. Diện tích hình thang
  • Bài 5. Diện tích hình thoi
  • Bài 6. Diện tích đa giác
  • Ôn tập chương II

Các bài học trước

  • Bài 11. Hình thoi
  • Bài 10. Đường thẳng song song với một đường thẳng cho trước
  • Bài 9. Hình chữ nhật
  • Bài 8. Đối xứng tâm
  • Bài 7. Hình bình hành
  • Bài 6. Đối xứng trục
  • Bài 5. Dựng hình bằng thước và compa. Dựng hình thang
  • Bài 4. Đường trung bình của tam giác, của hình thang
  • Bài 3. Hình thang cân
  • Bài 2. Hình thang

Tham Khảo Thêm

  • Giải Bài Tập Toán 8 Tập 1(Đang xem)
  • Giải Bài Tập Toán 8 Tập 2
  • Giải Bài Tập Toán Lớp 8 - Tập 1
  • Giải Bài Tập Toán Lớp 8 - Tập 2
  • Giải Toán 8 - Tập 1
  • Giải Toán 8 - Tập 2
  • Sách Giáo Khoa - Toán 8 Tập 1
  • Sách Giáo Khoa - Toán 8 Tập 2

Giải Bài Tập Toán 8 Tập 1

  • Phần Đại Số
  • Chương I. PHÉP NHÂN VÀ PHÉP CHIA CÁC ĐA THỨC
  • Bài 1. Nhân đơn thức với đa thức
  • Bài 2. Nhân da thức với đa thức
  • Bài 3. Những hằng đẳng thức đáng nhớ
  • Bài 4. Những hằng đẳng thức đáng nhớ (tiếp)
  • Bài 5. Những hằng đẳng thức đáng nhớ (tiếp)
  • Bài 6.Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung
  • Bài 7. Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức (tiếp)
  • Bài 8. Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử
  • Bài 9. Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp
  • Bài 10. Chia đơn thức cho đơn thức
  • Bài 11. Chia đa thức cho đơn thức
  • Bài 12. Chia đa thức một biến đã sắp xếp
  • Ôn tập chương I
  • Chương II. PHÂN THỨC ĐẠI SỐ
  • Bài 1. Phân thức đại số
  • Bài 2. Tính chất cơ bản của phân thức
  • Bài 3. Rút gọn phân thức
  • Bài 4. Quy đồng mẫu thức nhiều phân thức
  • Bài 5. Phép cộng các phân thức đại số
  • Bài 6. Phép trừ các phân thức đại số
  • Bài 7. Phép nhân các phân thức đại số
  • Bài 8. Phép chia các phân thức đại số
  • Bài 9. Biến đổi các biểu thức hữu tỉ. Giá trị của phân thức
  • Ôn tập chương II
  • Phần Hình Học
  • Chương I. TỨ GIÁC
  • Bài 1. Tứ giác
  • Bài 2. Hình thang
  • Bài 3. Hình thang cân
  • Bài 4. Đường trung bình của tam giác, của hình thang
  • Bài 5. Dựng hình bằng thước và compa. Dựng hình thang
  • Bài 6. Đối xứng trục
  • Bài 7. Hình bình hành
  • Bài 8. Đối xứng tâm
  • Bài 9. Hình chữ nhật
  • Bài 10. Đường thẳng song song với một đường thẳng cho trước
  • Bài 11. Hình thoi
  • Bài 12. Hình vuông(Đang xem)
  • Ôn tập chương I
  • Chương II. ĐA GIÁC. DIỆN TÍCH ĐA GIÁC
  • Bài 1. Đa giác. Đa giác đều
  • Bài 2. Diện tích hình chữ nhật
  • Bài 3. Diện tích tam giác
  • Bài 4. Diện tích hình thang
  • Bài 5. Diện tích hình thoi
  • Bài 6. Diện tích đa giác
  • Ôn tập chương II

Từ khóa » Toán Tám Hình Vuông