Giải Toán 8 Bài 4. Diện Tích Hình Thang - Giải Bài Tập

Giải Bài Tập

Giải Bài Tập, Sách Giải, Giải Toán, Vật Lý, Hóa Học, Sinh Học, Ngữ Văn, Tiếng Anh, Lịch Sử, Địa Lý

  • Home
  • Lớp 1,2,3
    • Lớp 1
    • Giải Toán Lớp 1
    • Tiếng Việt Lớp 1
    • Lớp 2
    • Giải Toán Lớp 2
    • Tiếng Việt Lớp 2
    • Văn Mẫu Lớp 2
    • Lớp 3
    • Giải Toán Lớp 3
    • Tiếng Việt Lớp 3
    • Văn Mẫu Lớp 3
    • Giải Tiếng Anh Lớp 3
  • Lớp 4
    • Giải Toán Lớp 4
    • Tiếng Việt Lớp 4
    • Văn Mẫu Lớp 4
    • Giải Tiếng Anh Lớp 4
  • Lớp 5
    • Giải Toán Lớp 5
    • Tiếng Việt Lớp 5
    • Văn Mẫu Lớp 5
    • Giải Tiếng Anh Lớp 5
  • Lớp 6
    • Soạn Văn 6
    • Giải Toán Lớp 6
    • Giải Vật Lý 6
    • Giải Sinh Học 6
    • Giải Tiếng Anh Lớp 6
    • Giải Lịch Sử 6
    • Giải Địa Lý Lớp 6
    • Giải GDCD Lớp 6
  • Lớp 7
    • Soạn Văn 7
    • Giải Bài Tập Toán Lớp 7
    • Giải Vật Lý 7
    • Giải Sinh Học 7
    • Giải Tiếng Anh Lớp 7
    • Giải Lịch Sử 7
    • Giải Địa Lý Lớp 7
    • Giải GDCD Lớp 7
  • Lớp 8
    • Soạn Văn 8
    • Giải Bài Tập Toán 8
    • Giải Vật Lý 8
    • Giải Bài Tập Hóa 8
    • Giải Sinh Học 8
    • Giải Tiếng Anh Lớp 8
    • Giải Lịch Sử 8
    • Giải Địa Lý Lớp 8
  • Lớp 9
    • Soạn Văn 9
    • Giải Bài Tập Toán 9
    • Giải Vật Lý 9
    • Giải Bài Tập Hóa 9
    • Giải Sinh Học 9
    • Giải Tiếng Anh Lớp 9
    • Giải Lịch Sử 9
    • Giải Địa Lý Lớp 9
  • Lớp 10
    • Soạn Văn 10
    • Giải Bài Tập Toán 10
    • Giải Vật Lý 10
    • Giải Bài Tập Hóa 10
    • Giải Sinh Học 10
    • Giải Tiếng Anh Lớp 10
    • Giải Lịch Sử 10
    • Giải Địa Lý Lớp 10
  • Lớp 11
    • Soạn Văn 11
    • Giải Bài Tập Toán 11
    • Giải Vật Lý 11
    • Giải Bài Tập Hóa 11
    • Giải Sinh Học 11
    • Giải Tiếng Anh Lớp 11
    • Giải Lịch Sử 11
    • Giải Địa Lý Lớp 11
  • Lớp 12
    • Soạn Văn 12
    • Giải Bài Tập Toán 12
    • Giải Vật Lý 12
    • Giải Bài Tập Hóa 12
    • Giải Sinh Học 12
    • Giải Tiếng Anh Lớp 12
    • Giải Lịch Sử 12
    • Giải Địa Lý Lớp 12
Trang ChủLớp 8Giải Bài Tập Toán 8Giải Bài Tập Toán 8 Tập 1Bài 4. Diện tích hình thang Giải toán 8 Bài 4. Diện tích hình thang
  • Bài 4. Diện tích hình thang trang 1
  • Bài 4. Diện tích hình thang trang 2
  • Bài 4. Diện tích hình thang trang 3
  • Bài 4. Diện tích hình thang trang 4
§4. Diện tích hình thang A. Tóm tắt kiến thức Diện tích hình thang bằng nửa tích của tổng hai đáy với chiều cao (h 2.25). Diện tích hình bình hành bằng tích của một cạnh với chiều cao ứng với cạnh đó (h 2.26). b s=ị(a + b).h s = a.h 2 Hình 2.25 Hình 2.26 B. Ví dụ giải toán Ví dụ. Cho hình thang ABCD, Â = D = 90° , AD = 4cm, BC = BD = 5cm. Tính diện tích hình thang. Trên tia đối của tia AB lấy điểm E sao cho AE = AB. Tính diện tích của tứ giác EBCD. Giải, a) Xét AABD vuông tại A, có AB2 = BD2 - AD2 = 25 - 16 = 9 => AB = 3 (cm). Vẽ BH 1 CD thì DH = AB = 3cm do đó CD = 6cm. Hình thang ABCD có diên tích là: s (AB + CD).AD,_(3 + 6)-.4^lg 1 2 . . 2 b) Ta có BE//CD và BE - CD (cùng bằng 2AB) suy ra tứ giác EBCD là hình bình hành. Diện tích EBCD là Sọ = CD.AD = 6.4 = 24 (cm2). Nhận xét: Bạn có thể tính diện tích s2 của tứ giác EBCD bằng cách lấỵ diện tích Sj của hình thang ABCD cộng với diện tích của tam giác ADE: s2 = Sj + SADE = 18 + 1.3.4 = 24 (cm2). c. Hướng dẫn giải các bài tập trong sách giáo khoa Bài 26. Lời giải. Tứ giác ABCD là hình chữ nhật nên S] = AB.CD => AD = Sj:AB = 828:23 = 36m. Diện tích của hình thang ABED là: ■ = (AB+DE).AD = (23 + 30.36 2 2 2 Bài 27. Hướng dẫn: Hình chữ nhật ABCD và hình bình hành ABEF có chung đáy AB và có chiều cao bằng nhau nên diện tích của chúng bằng nhau. Cách vẽ một hình chữ nhật có cùng diện tích với một hình bình hành cho trước: vẽ như hình 141 SGK. Bài 28. Lời giải Ta đặt FE = ER - RU = a; khoảng cách giữa hai đường thẳng song song IG và FU là h. Ta có SIGEF = SIGRE - SIGUR( = a.h) = SIFR = SGEU( - a.h) Vậy có 5 hình có diện tích bằng nhau. N Bài 29. Lời giải Hình 2.28 Giả sử ABCD là hình thang với M là trung điểm của AB, N là trung điểm của CD. Hai hình thang AMND và MBCN có cùng chiều cao, có đáy nhỏ bằng nhau (MA = MB), có đáy lớn bằng nhau (ND = NC) nên diện tích của chúng bằng nhau. Bài 30. Lời giải. Ta có AGAE = AKDE (cạnh huyền, góc nhọn); AHBF = AICF; Suy ra SGAE - SKDE; SHBF - S1CF Do đó SABCD = SGHIK = EF.GK = AB + CD .h (h là chiêu cao cua hình thang). Như vây ta có một cách khác để chứng minh công thức tính diện tích hình thang. Nhận xét: Cách khác để tính diện tích hình thang: diện tích hình thang bằng tích của đường trung bình với đường cao. Bài 31. Trả lời. Các hình 2, 6, 9 có cùng diện tích, là 6 ô vuông. Các hình 1, 5, 8 có cùng diện tích, là 8 ô vuông. Các hình 3, 7 có cùng diện tích, là 9 ô vuông. D. Bài tập luyện thêm Cho hình bình hành ABCD, AB = 8cm, BC = 4cm. Vẽ AH ± CD, AK 1 BC. Biết AH = 3cm, tính AK. Qua giao điểm o của AC và BD vẽ một đường thẳng bất kì cắt AB và CD lần lượt tại M và N. Tính diện tích tứ giác AMND. Cho hình thang ABCD (AB // CD), AB = 3cm, CD = 5cm. Xác định vị trí của điểm M trên AB sao cho tỉ số diện tích của các hình thang AMCD và BMCD là 6:7. Cho hình thang ABCD (AB // CD), AB < CD. Gọi M là trung điểm của AD. Qua M vẽ một đường thẳng song song với BC cắt CD tại N. Chứng minh rằng diện tích hình thang ABND bằng nửa diện tích hình thang ABCD. Hình thang cân ABCD (AB // CD) có tổng hai đáy bằng 6cm và tổng hai cạnh bên bằng 5cm. Tính diện tích lớn nhất của hình thang cân đó. Lời giải, hưóng dẫn, đáp sô a) Ta có BC.AK = CD.AH (bằng diện tích ABCD) suy ra CD.AH 8.3 AK = —= — = 6cm BC 4 b) AAOM = ACON (g.c.g), suy ra AM - CN. Diện tích hình thang AMND là s = I (AM + DN).AH = I (CN + DN).AH = 1 .8.3 = 12 (cm2). 2 2 A X M 3-x B => X = lcm. Vậy M nằm cách A là lcm. Vẽ AE // BC (EeCD) ta được EC = AB. Xét AADE có MN//AE (vì cùng song song với BC), MA = MD nên ND = NE. Diện tích của hình thang ABND là: s, = (AB + BN)-h (h là chiều cao) (1) Diện tích của hình thang ABCD là: s_ (AB + DC).h _ (AB + EC + DE).h _ 2(AB + DN).h 2 2 2 Từ (1) và (2) suy ra s, =yS . Ta có AD = 5:2 = 2,5 (cm). Vẽ đường cao AH thì AH < AD, do đó AH < 2,5 (cm) Diện tích hình thang cân ABCD là: e (AB + CD).AH 6.2,5 2 2 s < 7,5 (cm“). Vậy diện tích lớn nhất của hình thang cân ABCD là 7,5cm2 khi AH = AD, tức là khi ABCD là hình chữ nhật.

Các bài học tiếp theo

  • Bài 5. Diện tích hình thoi
  • Bài 6. Diện tích đa giác
  • Ôn tập chương II

Các bài học trước

  • Bài 3. Diện tích tam giác
  • Bài 2. Diện tích hình chữ nhật
  • Bài 1. Đa giác. Đa giác đều
  • Ôn tập chương I
  • Bài 12. Hình vuông
  • Bài 11. Hình thoi
  • Bài 10. Đường thẳng song song với một đường thẳng cho trước
  • Bài 9. Hình chữ nhật
  • Bài 8. Đối xứng tâm
  • Bài 7. Hình bình hành

Tham Khảo Thêm

  • Giải Bài Tập Toán 8 Tập 1(Đang xem)
  • Giải Bài Tập Toán 8 Tập 2
  • Giải Bài Tập Toán Lớp 8 - Tập 1
  • Giải Bài Tập Toán Lớp 8 - Tập 2
  • Giải Toán 8 - Tập 1
  • Giải Toán 8 - Tập 2
  • Sách Giáo Khoa - Toán 8 Tập 1
  • Sách Giáo Khoa - Toán 8 Tập 2

Giải Bài Tập Toán 8 Tập 1

  • Phần Đại Số
  • Chương I. PHÉP NHÂN VÀ PHÉP CHIA CÁC ĐA THỨC
  • Bài 1. Nhân đơn thức với đa thức
  • Bài 2. Nhân da thức với đa thức
  • Bài 3. Những hằng đẳng thức đáng nhớ
  • Bài 4. Những hằng đẳng thức đáng nhớ (tiếp)
  • Bài 5. Những hằng đẳng thức đáng nhớ (tiếp)
  • Bài 6.Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung
  • Bài 7. Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức (tiếp)
  • Bài 8. Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử
  • Bài 9. Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp
  • Bài 10. Chia đơn thức cho đơn thức
  • Bài 11. Chia đa thức cho đơn thức
  • Bài 12. Chia đa thức một biến đã sắp xếp
  • Ôn tập chương I
  • Chương II. PHÂN THỨC ĐẠI SỐ
  • Bài 1. Phân thức đại số
  • Bài 2. Tính chất cơ bản của phân thức
  • Bài 3. Rút gọn phân thức
  • Bài 4. Quy đồng mẫu thức nhiều phân thức
  • Bài 5. Phép cộng các phân thức đại số
  • Bài 6. Phép trừ các phân thức đại số
  • Bài 7. Phép nhân các phân thức đại số
  • Bài 8. Phép chia các phân thức đại số
  • Bài 9. Biến đổi các biểu thức hữu tỉ. Giá trị của phân thức
  • Ôn tập chương II
  • Phần Hình Học
  • Chương I. TỨ GIÁC
  • Bài 1. Tứ giác
  • Bài 2. Hình thang
  • Bài 3. Hình thang cân
  • Bài 4. Đường trung bình của tam giác, của hình thang
  • Bài 5. Dựng hình bằng thước và compa. Dựng hình thang
  • Bài 6. Đối xứng trục
  • Bài 7. Hình bình hành
  • Bài 8. Đối xứng tâm
  • Bài 9. Hình chữ nhật
  • Bài 10. Đường thẳng song song với một đường thẳng cho trước
  • Bài 11. Hình thoi
  • Bài 12. Hình vuông
  • Ôn tập chương I
  • Chương II. ĐA GIÁC. DIỆN TÍCH ĐA GIÁC
  • Bài 1. Đa giác. Đa giác đều
  • Bài 2. Diện tích hình chữ nhật
  • Bài 3. Diện tích tam giác
  • Bài 4. Diện tích hình thang(Đang xem)
  • Bài 5. Diện tích hình thoi
  • Bài 6. Diện tích đa giác
  • Ôn tập chương II

Từ khóa » Tính Diện Tích Hình Thang Cân Lớp 8