Giải Toán 9 Sách VNEN Bài 12: Diện Tích Hình Tròn - Hình Quạt Tròn
Có thể bạn quan tâm
A. Hoạt động khởi động
sgk trang 127
B. Hoạt động hình thành kiến thức
1. Thực hiện các hoạt động sau để hiểu về cách tính diện tích hình tròn
a) Đọc và làm theo hướng dẫn (sgk trang 128)
b) Đọc kĩ nội dung sau (sgk trang 128)
c) Luyện tập, ghi vào vở (sgk trang 129)
2. Thực hiện các hoạt động sau để hiểu về hình quạt tròn
a) Đọc và làm theo hướng dẫn (sgk trang 129)
b) Đọc kĩ nội dung sau (sgk trang 130)
c) Luyện tập, ghi vào vở (sgk trang 130)
C. Hoạt động luyện tập
Câu 1: Trang 130 toán VNEN 9 tập 2
Xem từng hình a), b), c) giới hạn bởi các đường gạch chéo ở hình 136 và tính diện tích mỗi hình đó.
Hướng dẫn: (h.136)
- Ở hình 136a), phần gạch chéo là một hình tròn có đường kính là 6 cm. Do đó, diện tích của nó bằng $..........$
- Ở hình 136b), phần gạch chéo gồm hai hình, một hình là một nửa hình tròn (đường kính 6cm) và hình kia gồm hai hình, mà mỗi hình là một hình vuông cạnh 3 cm bỏ đi một phần tư đường tròn (bán kính 3cm). Do đó, diện tích của nó bằng $...$
- Ở hình 136c), phần gạch chéo gồm bốn hình, mà mỗi hình là một hình vuông cạnh 3cm bỏ đi một phần tư hình tròn (bán kính 3cm). Do đó, diện tích của nó bằng $.......$
Trả lời:
- Ở hình 136a), phần gạch chéo là một hình tròn có đường kính là 6 cm. Do đó, diện tích của nó bằng $\pi R^2 = 3^2 \times \pi = 9\pi \; (cm^2)$
- Ở hình 136b), phần gạch chéo gồm hai hình, một hình là một nửa hình tròn (đường kính 6cm) và hình kia gồm hai hình, mà mỗi hình là một hình vuông cạnh 3 cm bỏ đi một phần tư đường tròn (bán kính 3cm). Do đó, diện tích của nó bằng $\frac{9\pi }{2} + 2\times (3\times 3 - \frac{\pi \times 3^2}{4}) = 18 \;(cm^2)$
- Ở hình 136c), phần gạch chéo gồm bốn hình, mà mỗi hình là một hình vuông cạnh 3cm bỏ đi một phần tư hình tròn (bán kính 3cm). Do đó, diện tích của nó bằng $4\times (3\times 3 - \frac{9\pi }{4}) = 36 - 9\pi \; (cm^2)$
Câu 2: Trang 131 toán VNEN 9 tập 2
Tính diện tích phần tô đậm ở hình 137, giới hạn bởi nửa đường tròn đường kính là LM và hai nửa đường tròn có đường kính tương ứng là LN = 8cm và NM = 4cm.
Hướng dẫn:
Gọi $S;\;S_1;\;S_2$ tương ứng là diện tích của các nửa đường tròn đường kính LM, LN, MN thì diện tích cần tìm bằng $S - S_1 + S_2$
Từ đó, $..............$
Trả lời:
Độ dài đoạn LM là: LM = LN + NM = 8cm + 4cm = 12 cm
Gọi $S;\;S_1;\;S_2$ tương ứng là diện tích của các nửa đường tròn đường kính LM, LN, MN thì diện tích cần tìm là:
$S - S_1 + S_2 = \frac{\pi \times (\frac{LM}{2})^2}{2} - \frac{\pi \times (\frac{LN}{2})^2}{2} + \frac{\pi \times (\frac{MN}{2})^2}{2}$
$= \frac{\pi \times (\frac{12}{2})^2}{2} - \frac{\pi \times (\frac{8}{2})^2}{2} + \frac{\pi \times (\frac{4}{2})^2}{2} = 12\pi $
Câu 3: Trang 131 toán VNEN 9 tập 2
Tính diện tích hình tròn, biết rằng nó ngoại tiếp một hình vuông có cạnh là 10 cm.
Gợi ý: Nếu cạnh hình vuông là a, bán kính đường tròn ngoại tiếp của nó là R thì $R = \frac{a\sqrt{2}}{2}$.
Trả lời:
Gọi a là độ dài cạnh hình vuông.
Bán kính đường tròn ngoại tiếp hình vuông là:
$R = \frac{a\sqrt{2}}{2}$
Diện tích hình tròn là:
$S = \pi \times R^2 = \pi \times (\frac{a\sqrt{2}}{2})^2 = \frac{\pi a^2}{2}$
Câu 4: Trang 131 toán VNEN 9 tập 2
Điền vào mỗi ô trống trong bảng sau (làm tròn kết quả đến chữ số thập phân thứ nhất).
Bán kính đường tròn (R) | Độ dài đường tròn (C) | Diện tích hình tròn (S) | Số đo của cung tròn ($n^\circ$) | Diện tích hình quạt tròn cung ($n^\circ$) |
25,12 cm | 36 | |||
12,56 $cm^2$ | 72 | |||
3 cm | 18 | |||
4 cm | 55 | |||
5 cm | 9,8125 $cm^2$ |
Trả lời:
Các em thực hiện phép tính rồi điền kết quả vào ô trống như bảng sau:
Bán kính đường tròn (R) | Độ dài đường tròn (C) | Diện tích hình tròn (S) | Số đo của cung tròn ($n^\circ$) | Diện tích hình quạt tròn cung ($n^\circ$) |
4,0 cm | 25,12 cm | 50,3 $cm^2$ | 36 | 5 $cm^2$ |
2,0 cm | 12,6 cm | 12,56 $cm^2$ | 72 | 2,5 $cm^2$ |
3 cm | 18,8 cm | 28,3 $cm^2$ | 18 | 1,4 $cm^2$ |
4 cm | 25,1 cm | 50,3 $cm^2$ | 55 | 7,7 $cm^2$ |
5 cm | 31,4 cm | 78,5 $cm^2$ | 45 | 9,8125 $cm^2$ |
D. Hoạt động vận dụng
Câu 1: Trang 131 toán VNEN 9 tập 2
Trên một mảnh đất hình chữ nhật có chu vi là 448 m, và chiều rộng bằng $\frac{3}{4}$ chiều dài, người ta đào một cái giếng để tưới nước có dạng hình tròn, diện tích còn lại để trồng rau. Nếu miệng giếng có chu vi là 12,56 m thì diện tích trồng rau là bao nhiêu mét vuông?
Trả lời:
Nửa chu vi là: $P = \frac{448}{2} = 224$ (m)
Gọi chiều dài khu đất là a (m), 0 < a < 224.
Theo bài ra, chiều rộng bằng $\frac{3}{4}$ chiều dài, nên chiều rộng khu đất là: $\frac{3a}{4}$.
Ta có: $a + \frac{3a}{4} = \frac{7a}{4} = 224 \Rightarrow a = 128$ m.
Diện tích cả khu đất là: $S = a\times \frac{3a}{4} = \frac{3a^2}{4} = \frac{3\times 128^2}{4} = 12288\; (m^2)$
Bán kính của giếng là: $R = \frac{C}{2\pi } = \frac{12,56}{2\pi } \approx 2$ (m)
Diện tích của giếng là: $S' = \pi R^2 = \pi \times 2^2 = 12,56\;(m^2)$
Diện tích phần trồng rau là: $S - S' = 12288 - 12,56 = 12275,44\;(m^2)$
Câu 2: Trang 132 toán VNEN 9 tập 2
Nếu diện tích một bánh xe đạp có dạng hình tròn là 7234,56 $cm^2$ thì để đi được quãng đường dài 22 608 m, bánh xe đó phải lăn bao nhiêu vòng?
Trả lời:
Bán kính của bánh xe là: $R = \sqrt{\frac{S}{\pi }} = \sqrt{\frac{7234,56}{\pi }} \approx 48\; cm = 0,48 \;m$.
Chu vi bánh xe là: $C = 2\pi R = 2\pi \times 0,48 \approx 3$ (m).
Để đi được quãng đường dài 22 608 m, bánh xe đó phải lăn số vòng là: $n = \frac{22 608}{3} = 7536$ (vòng).
Câu 3: Trang 132 toán VNEN 9 tập 2
Một sân thể thao có dạng hình chữ nhật ABCD, với AB = 100 m và AD = 70 m. Người ta lắp đặt hai dàn đèn chiếu sáng ở hai góc sân A, B như hình 138. Biết rằng mỗi dàn đèn đó chiều sáng cho mặt sân được một vùng có dạng $\frac{1}{4}$ hình tròn, bán kính R, mà gốc của dàn đèn đó được xem là tâm của hình tròn này.
- Lần thứ nhất, người ta lắp đặt hai dàn đèn chiếu sáng cở A và B mà mỗi dàn chiếu sáng theo bán kính 30m.
- Lần thứ hai, người ta lắp đặt sao cho một dàn đèn ở A chiếu sáng theo bán kính 50m và dàn đèn ở B chiếu sáng theo bán kính 10 m.
Theo em, với cách lắp đặt nào thì diện tích chiếu sáng trên sân sẽ lớn hơn? Vì sao?
Trả lời:
- Lần thứ nhất:
Diện tích phần sân được chiếu sáng là:
$S = \frac{1}{4}\times \pi \times R_A^2 + \frac{1}{4}\times \pi \times R_B^2$
$= \frac{1}{4}\times \pi \times (R_A^2 + R_B^2)$
$= \frac{1}{4}\times \pi \times (30^2 + 30^2) = 450\pi \;(m^2)$
- Lần thứ 2:
Diện tích phần sân được chiếu sáng là:
$S' = \frac{1}{4}\times \pi \times R_A^2 + \frac{1}{4}\times \pi \times R_B^2$
$= \frac{1}{4}\times \pi \times (R_A^2 + R_B^2)$
$= \frac{1}{4}\times \pi \times (50^2 + 10^2) = 650\pi \;(m^2)$
Do S' > S nên diện tích chiếu sáng của cách lắp thứ hai nhiều hơn.
Từ khóa » Diện Tích Hình Chữ Nhật Diện Tích Hình Vuông Vnen
-
Giải VNEN Toán 8 Bài 1: Diện Tích Hình Chữ Nhật. Diện Tích Hình Vuông
-
Giải Toán 8 VNEN Bài 1: Diện Tích Hình Chữ Nhật. Diện Tích Hình Vuông
-
Giải VNEN Toán 8 Bài 1: Diện Tích Hình Chữ Nhật. Diện Tích Hình Vuông
-
Soạn VNEN Toán 8 Bài 1: Diện Tích Hình Chữ Nhật. Diện Tích Hình Vuông
-
Giải VNEN Toán 8 Bài 1: Diện Tích Hình Chữ Nhật. Diện ... - Khoa Học
-
Giải Toán Lớp 5 VNEN Bài 63: Diện Tích Hình Tròn
-
Giải Toán 3 VNEN Bài 81: Diện Tích Hình Vuông | Hay Nhất Giải Bài ...
-
Giải Toán Lớp 8 VNEN Bài 1: Diện Tích Hình Chữ Nhật. Diện Tích Hình ...
-
A. Hoạt động Cơ Bản - Bài 63 : Diện Tích Hình Tròn - VNEN Toán - Tìm
-
A. Hoạt động Cơ Bản - Bài 87 : Diện Tích Hình Thoi | VNEN Toán Lớp 4
-
B. Hoạt động Thực Hành - Bài 87 : Diện Tích Hình Thoi
-
Giải Toán 3 VNEN Bài 81: Diện Tích Hình Vuông
-
Vở Thực Hành Toán Lớp 3 Tập 2b Bài 81: Diện Tích Hình Vuông | HoiCay