Gieo Hai Con Súc Sắc Cân đối đồng Chất. Tính Xác Suất để ... - Hoc247
Có thể bạn quan tâm
- Câu hỏi:
Gieo hai con súc sắc cân đối đồng chất. Tính xác suất để hiệu số chấm xuất hiện của hai con súc sắc bằng 1.
- A. \(\frac{5}{{36}}\)
- B. \(\frac{5}{9}\)
- C. \(\frac{5}{{18}}\)
- D. \(\frac{1}{9}\)
Lời giải tham khảo:
Đáp án đúng: C
Số phần tử không gian mẫu \(n\left( \Omega \right) = 6.6 = 36\)
Gọi A là biến cố hiệu số chấm xuất hiện của hai con súc sắc bằng 1
\(A = \left\{ {\left( {1;2} \right),\left( {2;1} \right),\left( {2;3} \right),\left( {3;2} \right),\left( {3;4} \right),\left( {4;3} \right),\left( {4;5} \right),\left( {5;4} \right),\left( {5;6} \right),\left( {6;5} \right)} \right\}\)
\( \Rightarrow n\left( A \right) = 10 \Rightarrow P\left( A \right) = \frac{{10}}{{36}} = \frac{5}{{18}}\)
Lưu ý: Đây là câu hỏi tự luận.
ATNETWORK
Mã câu hỏi: 285905
Loại bài: Bài tập
Chủ đề :
Môn học: Toán Học
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
-
Đề ôn tập hè môn Toán 12 năm 2021 - Trường THPT Phú Nhuận
40 câu hỏi | 45 phút Bắt đầu thi
YOMEDIA Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC
- Trong tất cả các số phức z thỏa mãn điều kiện sau: \(\left| {z + 1} \right| = \left| {\frac{{z + \bar z}}{2} + 3} \right|\), gọi số phức \(z = a + b{\rm{i}}\) là số phức có môđun nhỏ nhất. Tính S = 2a + b.
- Cho số phức \(z = a + bi\,\left( {a,\,b \in \mathbb{Z}} \right)\) thỏa mãn \(\left| {z + 2 + 5i} \right| = 5\) và \(z.\bar z = 82\). Tính giá trị của biểu thức P = a + b.
- Cho số phức z thỏa mãn: \(\overline z = \frac{{{{\left( {1 + \sqrt 3 i} \right)}^3}}}{{1 – i}}\). Tìm môđun của \(\overline z + iz\).
- Cho số phức z = a + bi, với \(a,\,\,b\) là các số thực thỏa mãn \(a + bi + 2i\left( {a – bi} \right) + 4 = i\), với i là đơn vị ảo. Tìm mô đun của \(\omega = 1 + z + {z^2}\).
- Giả sử \(\left( {{x_0};{y_0}} \right)\) là cặp nghiệm nguyên khôg âm có tổng \(S = {x_0} + {y_0}\) lớn nhất của bất phương t
- Có bao nhiêu cặp số nguyên dương \(\left( {x;y} \right)\) thỏa mãn \(\log \left( {2x + {2^y}} \right) \le 1\).
- Có bao nhiêu giá trị nguyên dươg của tham số m để tập nghiệm của bất phương trình \(\left( {{3^{x + 2}} – \sqrt 3 } \righ
- Có bao nhiêu cặp số nguyên dương \(\left( {x;y} \right)\) với \(x \le 2020\) thỏa mãn \({\log _2}\left( {x – 1} \right) + 2x – 2y = 1 + {4^y}\).
- Gieo hai con súc sắc, tính xác suất để tổng số chấm trên mặt xuất hiện của hai con súc sắc bằng 7.
- Chọn ngẫu nhiên 3 số trong 50 số tự nhiên 1;2;3;4…50. Tính xác suất biến cố A: trong 3 số đó chỉ có 2 số là bội của 5.
- Có hai cái rương, mỗi rương chứa 5 cái thẻ đánh số tự 1 đến 5. Rút ngẫu nhiên từ mỗi cái rương một tấm thẻ. Xác suất để 2 thẻ rút ra đều ghi số lẻ là
- Gieo hai con súc sắc cân đối đồng chất. Tính xác suất để hiệu số chấm xuất hiện của hai con súc sắc bằng 1.
- Có hai hòm, mỗi hòm chứa 5 tấm thẻ đánh số từ 1 đến 5. Rút ngẫu nhiên từ mỗi hòm 1 tấm thẻ. Xác suất để 2 thẻ rút ra đều ghi số lẻ là:
- Chọn ngẫu nhiên hai số khác nhau từ 27 số nguyên dươg đầu tiên. Xác suất
- Một hộp đựng 10 chiếc thẻ được đánh số từ 0 đến 9. Lấy ngẫu nhiên ra 3 chiếc thẻ, tính xác suất để 3 chữ số trên 3 chiếc thẻ được lấy ra có thể ghép thành một số chia hết cho 5.
- Cho \(imits_0^1 {\left[ {f\left( x \right) – 2g\left( x \right)} \right]{\rm{d}}x} = 12\) và \(\int\limits_0^1 {g\left( x \right){\rm{d}}x} =
- Nếu \(\int_0^2 {f\left( x \right){\rm{d}}x} = 2;\,\int_0^2 {g\left( x \right){\rm{d}}x} = 1\) thì \(\int_0^2 {\left[ {3f\left( x \right) – g\left( x \right)} \right]{\rm{d}}x} \) bằng
- Nếu \(\int_{ – 2}^1 {f\left( x \right){\rm{d}}x} = 5\) thì \(\int_{ – 2}^1 {\left[ {f\left( x \right) + 3} \right]{\rm{d}}x} \) bằng
- Nếu \(\int_0^2 {\left[ {3f\left( x \right) – x} \right]{\rm{d}}x} = 5\) thì \(\int_1^2 {f\left( x \right){\rm{d}}x} \) bằng
- Biết \(y = f\left( x \right)\) là hàm số lẻ, xác định, liên tục trên \(\left[ { – 2;2} \right]\) và \(\int_{ – 2}^0 {f\left( x \right){\rm{d}}x} = 4\). Tính \(\int_0^2 {f\left( x \right){\rm{d}}x} \)
- Cho \(\int\limits_{ – \frac{\pi }{2}}^{\frac{\pi }{2}} {f\left( x \right){\rm{d}}x} = 1\). Tính \(\int\limits_{ – \frac{\pi }{2}}^{\frac{\pi }{2}} {\left[ {f\left( x \right) + {{\sin }^{2021}}x} \right]{\rm{d}}x} \)
- Cho hàm số \(y = f\left( x \right)\) liên tục trên đoạn \(\left[ { – 1\,;\,3} \right]\) thỏa mãn \(\int\limits_0^1 {f\left( x \right)} \,{\rm{d}}x = 2\) và \(\int\limits_1^3 {f\left( x \right)} \,{\rm{d}}x = 4\). Tính \(\int\limits_{ – 1}^3 {f\left( {\left| x \right|} \right)\,} {\rm{d}}x\).
- Cho hàm số \(y = f\left( x \right)\) có đạo hàm liên tục trên đoạn \(\left[ {0;1} \right]\) thỏa mãn \(f\left( 1 \right) = 0\) và \(\int\limits_0^1 {{x^{2018}}f\left( x \right){\rm{d}}x} = 2\). Giá trị của \(\int\limits_0^1 {{x^{2019}}f’\left( x \right){\rm{d}}x} \) bằng
- Cho hàm số \(f\left( x \right)\) liên tục trên \(\left[ {3;7} \right]\) và thỏa mãn \(f\left( x \right) = f\left( {10 – x} \right)\) với \(\forall x \in \left[ {3;7} \right]\) và \(\int\limits_3^7 {f\left( x \right){\rm{d}}x} = 4\). Tính \(I = \int\limits_3^7 {xf\left( x \right){\rm{d}}x} \)?
- Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) thỏa \(\int\limits_0^1 {f\left( x \right){\rm{d}}x} = 2\) và \(\int\limits_0^2 {f\left( {3x + 1} \right){\rm{d}}x} = 6\). Tính \(I = \int\limits_0^7 {f\left( x \right){\rm{d}}x} \)
- Trong không gian với hệ trục Oxyz, cho tam giác \(ABC\) có \(A\left( { – 1;3;2} \right), B\left( {2;0;5} \right)\) và \(C\left( {0; – 2;1} \right)\). Phương trình trung tuyến AM của tam giác ABC là.
- Trong không gian Oxyz, đường thẳng d đi qua gốc tọa độ O và có vectơ chỉ phương \(\overrightarrow u = \left( {1;2;3} \right)\) có phương trình:
- Trong khôg gian với hệ tọa độ Oxyz, cho hai điểm \(A\left( {3;{\rm{ }}2;{\rm{ }}2} \right), B\left( {4; – 1;0} \right)\).
- Trong khôg gian \(Oxyz\), đường thẳng chứa trục \(Oy\) có phương trình tham số là
- Trong không gian với hệ tọa độ \(Oxyz\), cho hai điểm \(A\left( {1;\;2;\; – 3} \right), B\left( {3;\; – 1;\;1} \right)\). Tìm phương trình chính tắc của đường thẳng đi qua A và B.
- Viết phương trình tham số của đường thẳng \(\left( D \right)\) qua \(I\left( { – 1;5;2} \right)\) và song song với trục Ox.
- Trong khôg gian với hệ tọa độ Oxyz, cho hai điểm \(A\left( {2;\,3;\, – 1} \right),B\left( {1;\,2;\,4} \right)\).
- Trong không gian với hệ tọa độ Oxyz, cho hai điểm \(A\left( {1;2; – 3} \right), B\left( { – 2;3;1} \right)\). Đường thẳng đi qua \(A\left( {1;2; – 3} \right)\) và song song với \(OB\) có phương trình là
- Trong không gian Oxyz, cho mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} – 2x + 4y – 6z + 9 = 0\). Tọa độ tâm I của mặt cầu là
- Trong không gian Oxyz, cho mặt cầu \((S):{x^2} + {y^2} + {z^2} – 2y + 4z + 2 = 0.\) Độ dài đường kính của mặt cầu (S) bằng
- Trong không gian Oxyz, phương trình mặt cầu (S) có tâm \(I( – 1;2;0),\) bán kính R = 4 là
- Mặt cầu \(\left( S \right)\) có tâm \(I\left( {1; – 3;2} \right)\) và đi qua \(A\left( {5; – 1;4} \right)\) có phương trình:
- Trong các phương trình sau, phương trình nào không phải là phương trình mặt cầu?
- Trong không gian Oxyz, cho mặt cầu \((S):{x^2} + {y^2} + {z^2} – 2x + 4y – 4z – m = 0\) có bán kính R = 5. Giá trị của tham số m bằng
- Trong không gian Oxyz, mặt cầu (S) có đường kính AB với \(A\left( {2;1;1} \right) , B\left( {0;3; – 1} \right)\) có phương trình là:
Bộ đề thi nổi bật
UREKA AANETWORK
XEM NHANH CHƯƠNG TRÌNH LỚP 12
Toán 12
Lý thuyết Toán 12
Giải bài tập SGK Toán 12
Giải BT sách nâng cao Toán 12
Trắc nghiệm Toán 12
Hình học 12 Chương 3
Ngữ văn 12
Lý thuyết Ngữ Văn 12
Soạn văn 12
Soạn văn 12 (ngắn gọn)
Văn mẫu 12
Soạn Ai đã đặt tên cho dòng sông
Tiếng Anh 12
Giải bài Tiếng Anh 12
Giải bài Tiếng Anh 12 (Mới)
Trắc nghiệm Tiếng Anh 12
Unit 9 Lớp 12 Deserts
Tiếng Anh 12 mới Unit 4
Vật lý 12
Lý thuyết Vật Lý 12
Giải bài tập SGK Vật Lý 12
Giải BT sách nâng cao Vật Lý 12
Trắc nghiệm Vật Lý 12
Ôn tập Vật lý 12 Chương 3
Hoá học 12
Lý thuyết Hóa 12
Giải bài tập SGK Hóa 12
Giải BT sách nâng cao Hóa 12
Trắc nghiệm Hóa 12
Ôn tập Hóa học 12 Chương 4
Sinh học 12
Lý thuyết Sinh 12
Giải bài tập SGK Sinh 12
Giải BT sách nâng cao Sinh 12
Trắc nghiệm Sinh 12
Ôn tập Sinh 12 Chương 1 - Tiến hóa
Lịch sử 12
Lý thuyết Lịch sử 12
Giải bài tập SGK Lịch sử 12
Trắc nghiệm Lịch sử 12
Lịch Sử 12 Chương 2 Lịch Sử VN
Địa lý 12
Lý thuyết Địa lý 12
Giải bài tập SGK Địa lý 12
Trắc nghiệm Địa lý 12
Địa Lý 12 VĐSD và BVTN
GDCD 12
Lý thuyết GDCD 12
Giải bài tập SGK GDCD 12
Trắc nghiệm GDCD 12
GDCD 12 Học kì 1
Công nghệ 12
Lý thuyết Công nghệ 12
Giải bài tập SGK Công nghệ 12
Trắc nghiệm Công nghệ 12
Công nghệ 12 Chương 3
Tin học 12
Lý thuyết Tin học 12
Giải bài tập SGK Tin học 12
Trắc nghiệm Tin học 12
Tin học 12 Chương 2
Cộng đồng
Hỏi đáp lớp 12
Tư liệu lớp 12
Xem nhiều nhất tuần
Video: Vợ nhặt của Kim Lân
Đề cương HK1 lớp 12
Video ôn thi THPT QG môn Sinh
Video ôn thi THPT QG môn Văn
Video ôn thi THPT QG môn Vật lý
Video ôn thi THPT QG Tiếng Anh
Video ôn thi THPT QG môn Hóa
Video ôn thi THPT QG môn Toán
Khái quát văn học Việt Nam từ đầu CMT8 1945 đến thế kỉ XX
Người lái đò sông Đà
Đất Nước- Nguyễn Khoa Điềm
Đàn ghi ta của Lor-ca
Ai đã đặt tên cho dòng sông
Tây Tiến
Quá trình văn học và phong cách văn học
YOMEDIA YOMEDIA ×Thông báo
Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.
Bỏ qua Đăng nhập ×Thông báo
Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.
Đồng ý ATNETWORK ON
QC Bỏ qua >>
Từ khóa » Gieo 2 Con Súc Sắc Cân đối Và đồng Chất 2 Lần
-
Gieo Hai Con Súc Sắc Cân đối đồng Chất. Tính Xác Suất để Số Chấm ...
-
Gieo Hai Con Súc Sắc Cân đối Và đồng Chất. Xác Suất để Tổng Số Ch
-
Gieo Hai Con Súc Sắc Cân đối Và đồng Chất. Xác Suất để...
-
Gieo Hai Con Súc Sắc Cân đối đồng Chất. Tính Xác Suất để Số Chấm ...
-
Gieo Hai Con Súc Sắc Cân đối đồng Chất. Tính Xác Suất ... - Sách Toán
-
Gieo Ngẫu Nhiên 2 Con Súc Sắc Cân đối Và đồng Chất . Xác Suất để ...
-
Gieo Một Con Súc Sắc Cân đối Và đồng Chất Hai Lần - Selfomy Hỏi Đáp
-
Gieo Con Súc Sắc Cân đối đồng Chất 2 - 2 - Lần. Tính Xác Suất để Tích ...
-
Gieo đồng Thời Hai Con Súc Sắc Cân đối Và đồng Chất. Xác Suất để ...
-
Gieo Một Con Xúc Xắc Cân đối đồng Chất 2 Lần, Tính Xác Suất để Biến ...
-
Gieo Hai Con Súc Sắc Cân đối Và đồng Chất. Xác Suất để Tổng Số ...
-
Gieo Một Con Súc Sắc Cân đối Và đồng Chất 2 Lần. Tính Xác Suất Của ...
-
Gieo đồng Thời Hai Con Súc Sắc Cân đối Và đồng Chất Xác Suất để ...
-
Gieo Một Con Súc Sắc Cân đối Và... - CungHocVui