Giới Thiệu Tất Tần Tật Về Công Thức Tính đạo Hàm Arctan U - Monkey

x

Đăng ký nhận tư vấn về sản phẩm và lộ trình học phù hợp cho con ngay hôm nay!

*Vui lòng kiểm tra lại họ tên *Vui lòng kiểm tra lại SĐT *Vui lòng kiểm tra lại Email Học tiếng Anh cơ bản (0-6 tuổi) Nâng cao 4 kỹ năng tiếng Anh (3-11 tuổi) Học Toán theo chương trình GDPT Học Tiếng Việt theo chương trình GDPT *Bạn chưa chọn mục nào! Đăng Ký Ngay X

ĐĂNG KÝ NHẬN TƯ VẤN THÀNH CÔNG!

Monkey sẽ liên hệ ba mẹ để tư vấn trong thời gian sớm nhất! Hoàn thành X

ĐÃ CÓ LỖI XẢY RA!

Ba mẹ vui lòng thử lại nhé! Hoàn thành x

Đăng ký nhận bản tin mỗi khi nội dung bài viết này được cập nhật

*Vui lòng kiểm tra lại Email Đăng Ký
  1. Trang chủ
  2. Ba mẹ cần biết
  3. Giáo dục
  4. Kiến thức cơ bản
Công thức tính đạo hàm arctan u và các dạng bài tập tự luyện Kiến thức cơ bản Công thức tính đạo hàm arctan u và các dạng bài tập tự luyện Ngân Hà Ngân Hà

27/05/20223 phút đọc

Mục lục bài viết

Đạo hàm arctan u là một công thức khá khó nhớ và dễ nhầm lẫn, gây khó khăn cho người học. Để có thể nhớ lâu và hiểu bản chất của vấn đề, cùng đi vào tìm hiểu về đạo hàm của arctan u qua bài viết sau đây nhé!

Tổng quan về đạo hàm arctan u

Đạo hàm arctan u là đạo hàm của hàm hợp. Tất cả các công thức đạo hàm đều liên quan đến hàm hợp u với u là một hàm số với biến số x. Nếu không nhớ rõ và hiểu bản chất của hàm số u, người học sẽ rất dễ nhầm lẫn với đạo hàm của arctan x và từ đó giải sai toàn bài.

Hàm số u(x) với công thức tổng quát là u(x) = ax^n+ bx^m + C. Tùy thuộc vào phương trình u(x) khác nhau mà công thức đạo hàm arctan u sẽ có một số thay đổi.

Arctan chính là một hàm số ngược trong công thức đạo hàm lượng giác. Để tìm hiểu về đạo hàm arctan u, ta cần tìm hiểu về hàm số y = arctan u.

Tương tự như đạo hàm arctan x thì hàm arctan u chính là hàm y = arctan u.Đây là hàm tiếp tuyến ngược của u với u là một hàm biến số x thuộc tập hợp số thực (x = R). Với hàm tiếp tuyến của y bằng u có công thức là tan y = u thì khi đó thì arctan của u sẽ bằng hàm tiếp tuyến ngược của u với công thức y = arctan u = tan -1 u

Lấy ví dụ: Cho y = arctan u với u = x = 1. Suy ra y = arctan 1 = tan ^-1 . 1 = π / 4 rad = 45 °

Tổng quan về đạo hàm arctan u. (Ảnh: Sưu tầm Internet)

Ngoài ra, để có thể tìm được arctan u đạo hàm, ta cùng cần phải ràng buộc điều kiện để arctan u có nghĩa. Nó cần đáp ứng một trong các điều kiện mệnh đề sau đây:

  • Mệnh đề 1: Hàm f ( X -> Y ) có hàm ngược khi và chỉ khi F chính là ánh xạ 1-1 từ X đến Y.

  • Mệnh đề 2: Hàm f ( X -> Y ) có hàm ngược ở trên khoảng (a;b) nếu như f là đơn điệu tăng hoặc giảm chắn trên đoạn (a;b).

Các công thức cần biết về đạo hàm arctan u

Bởi u là một hàm hợp với biến số x, nên khi đạo hàm của arctan u sẽ có thể đạo hàm lần thứ 2, lần thứ 3,... Cùng tìm hiểu về các công thức đạo hàm này nhé!

Tìm đạo hàm của hàm arctan u

Công thức đạo hàm arctan u hay còn gọi đạo hàm lần thứ nhất là đạo hàm y’ của hàm số y với y = arctan u. Ta có công thức đạo hàm y’ của arctan u như sau:

Ví dụ minh họa:

Đề bài: Tính đạo hàm của hàm số y = arctan u với x^2 + 2x + 3

Lời giải: Đạo hàm lần thứ nhất của hàm số y = arctan u là:

Tìm đạo hàm lần thứ 2 của hàm arctan u

Một số công thức đạo hàm cơ bản của x. (Ảnh: Sưu tầm Internet)

Để tìm đạo hàm lần thứ 2 y’’ của hàm số arctan u, ta cần phải tìm lần lượt xong đạo hàm lần thứ nhất rồi sau đó mới tiếp tục đạo hàm kết quả đạt được. Ta có công thức tổng quát như sau:

Ví dụ về đạo hàm cấp 2

Tìm đạo hàm cấp 2 của hàm số f (x) = ( 2x - 3 )^5

Lời giải:

Ví dụ về đạo hàm cấp 2 của arctan u

Đề bài: Tính đạo hàm cấp 2 của hàm số y = arctan u với x^2 + 2x + 3

Lời giải: Đạo hàm lần thứ 2 của hàm số y = arctan u là:

Xem thêm: Cách tính các dạng đạo hàm arctan thường gặp: Dễ hiểu, dễ áp dụng nhất

Tìm đạo hàm lần thứ 3 của hàm arctan u

Một số công thức đạo hàm của hàm hợp. (Ảnh: Sưu tầm Internet)

Tương tự, để tìm đạo hàm lần thứ 3 của hàm số y = arctan u, ta cần tìm được đạo hàm lần thứ 2 của hàm số này từ đó đạo hàm tiếp kết quả 1 lần nữa. Ta có công thức như sau:

Ví dụ về đạo hàm lần thứ 3

Đề bài: Tìm đạo hàm cấp 3 của hàm số f (x) = ( 2x - 3 )^5

Lời giải:

Ví dụ về đạo hàm cấp 3 của arctan u

Đề bài: Tính đạo hàm cấp 3 của hàm số y = arctan u với x^2 + 2x + 3

Lời giải: Đạo hàm lần thứ 3 của hàm số y = arctan u là:

Tìm đạo hàm thứ 4 của hàm arctan u

Đạo hàm cấp 4 là đạo hàm của đạo hàm cấp 3 hàm số y = arctan u. Ta có công thức đạo hàm cấp 4 như sau:

Công thức trên là cách viết công thức thu gọn thể hiện bản chất của đạo hàm cấp 3. Trong lúc tính toán đạo hàm cấp 4, ta cần lần lượt tìm được đạo hàm cấp 1, cấp 2, cấp 3 của hàm số đó.

Công thức chung đạo hàm của hàm hợp F(u). (Ảnh: Sưu tầm Internet)

Ví dụ về đạo hàm lần thứ 4

Đề bài: Tìm đạo hàm cấp 4 của hàm số f (x) = ( 2x - 3 )^5

Lời giải:

Ví dụ về đạo hàm cấp 4 của arctan u

Đề bài: Tính đạo hàm cấp 4 của hàm số y = arctan u với x^2 + 2x + 3

Lời giải: Đạo hàm lần thứ 4 của hàm số y = arctan u là:

Một số dạng bài tập cần tự luyện thường xuyên

Để có thể nhuần nhuyễn các bài toán tìm đạo hàm của arctan u, bạn cần phải luyện tập thường xuyên và ghi nhớ các dạng bài tập sau đây:

  • Các mẫu bài tập tìm đạo hàm arctan x.

  • Các mẫu bài tập về tìm đạo hàm cấp 1, cấp 2, cấp 3,... của các hàm số đơn giản.

  • Các mẫu bài tập tìm đạo hàm cấp 1, cấp 2, cấp 3,... của các hàm số phức tạp.

  • Lồng ghép vào công thức chung của đạo hàm arctan u để giải các bài tập.

  • Các chuyên đề bài tập minh họa thực tế.

Trên đây là các công thức chi tiết của đạo hàm arctan u và một số bài tập giúp bạn tự luyện và ghi nhớ công thức đạo hàm của hàm hợp này. Hy vọng bài viết này sẽ giúp bạn hiểu rõ về công thức đạo hàm này!

Chia sẻ ngay button-share Chia sẻ

Sao chép liên kết

Ngân Hà Ngân Hà

Tôi là Ngân Hà (Aly Ngân), biên tập viên đã có hơn 2 năm đảm nhận vị trí Content Marketing chuyên nghiệp, có kiến thức và kinh nghiệm viết bài về lĩnh vực giáo dục và sức khỏe,...

Bài viết liên quan
  • Công thức và cách giải bài tập ứng dụng đạo hàm trong vật lý chi tiết
  • [Giải đáp] Tia UV và ánh sáng xanh có giống nhau không?
  • Mol là gì? Khối lượng Mol là gì? - Tìm hiểu chi tiết từ A-Z
  • Diện tích hình tròn là gì? Công thức và bài tập vận dụng chi tiết
  • Cách tính bán kính hình tròn đơn giản và bài tập tự luyện hiệu quả
Bạn có đang quan tâm đến việc cho con học Tiếng Anh? Không Giúp bé giỏi Tiếng Anh Sớm Đăng ký ngay tại đây *Vui lòng kiểm tra lại họ tên *Vui lòng kiểm tra lại SĐT *Vui lòng kiểm tra lại Email Mã mới Rất tiếc. Mã bạn nhập không khớp với hình ảnh. Nếu bạn muốn hình ảnh khác, hãy chọn "Mã mới"" Đăng ký ngay Nhận các nội dung mới nhất, hữu ích và miễn phí về kiến thức Giáo dục trong email của bạn *Vui lòng kiểm tra lại Email Đăng Ký Các Bài Viết Mới Nhất Khi nào dùng could và would đầy đủ, chính xác nhất! Khi nào dùng could và would đầy đủ, chính xác nhất! Cách sử dụng, phân biệt both và both of trong tiếng Anh Cách sử dụng, phân biệt both và both of trong tiếng Anh Yet dùng khi nào? Các quy tắc và lưu ý khi dùng yet trong tiếng Anh Yet dùng khi nào? Các quy tắc và lưu ý khi dùng yet trong tiếng Anh Being là gì? Khi nào dùng being để tránh lỗi ngữ pháp tiếng Anh Being là gì? Khi nào dùng being để tránh lỗi ngữ pháp tiếng Anh Hướng dẫn phân biệt USED TO, BE USED TO và GET USED TO dễ hiểu nhất! Hướng dẫn phân biệt USED TO, BE USED TO và GET USED TO dễ hiểu nhất! Khi nào dùng could và would đầy đủ, chính xác nhất! Khi nào dùng could và would đầy đủ, chính xác nhất! Cách sử dụng, phân biệt both và both of trong tiếng Anh Cách sử dụng, phân biệt both và both of trong tiếng Anh Yet dùng khi nào? Các quy tắc và lưu ý khi dùng yet trong tiếng Anh Yet dùng khi nào? Các quy tắc và lưu ý khi dùng yet trong tiếng Anh Being là gì? Khi nào dùng being để tránh lỗi ngữ pháp tiếng Anh Being là gì? Khi nào dùng being để tránh lỗi ngữ pháp tiếng Anh Hướng dẫn phân biệt USED TO, BE USED TO và GET USED TO dễ hiểu nhất! Hướng dẫn phân biệt USED TO, BE USED TO và GET USED TO dễ hiểu nhất!

Đăng ký tư vấn nhận ưu đãi

Monkey Junior

Mới! *Vui lòng kiểm tra lại họ tên *Vui lòng kiểm tra lại SĐT Bạn là phụ huynh hay học sinh ? Học sinh Phụ huynh *Bạn chưa chọn mục nào! Đăng Ký Mua Monkey Junior

Từ khóa » đạo Hàm Arctan(2x)