Given F^2(x) + G^2(x) + H^2(x) < 9 And U(x) = 3f(x) + 4g(x) + 10h(x ...

SolveGuidesJoin / LoginUse appLogin0You visited us 0 times! Enjoying our articles? Unlock Full Access!Standard XIIMathematicsQuestionGiven f2(x)+g2(x)+h2(x)9 and U(x)=3f(x)+4g(x)+10h(x),where f(x).g(x) and h(x) are continuous xR. If maximum value of U(x) is N. Then find N. Open in AppSolutionVerified by Toppr

Given : U(x)=3f(x)+4g(x)+10h(x)Squaring both sides we getU2(x)=9f2(x)+16g2(x)+100h2(x)+24f(x)g(x)+80g(x)h(x)+60f(x)h(x)we know that,a2+b2>2abHence 2aba2+b2using the above property we can say2.3.4f(x).g(x)16f(x)+0g2(x)...[1]2.4.10g(x).h(x)16h2(x)+100g2(x)...[2]2.10.3.f(x).h(x)100f2(x)+9h2(x)...[3]Using [1] [2] [3] we can writeU2(x)9f2(x)+16g2(x)+100h2(x)+16f2+9g2(x)+16h2(x)+100g2(x)+100f2(x)+9h2(x)U2(x)125f2(x)+125g2(x)+125h2(x)U2(x)125(f2(x)+g2(x)+h2(x)Given that f2(x)+g2(x)+h2(x)9U2(x)125×9U(x)125×9=1125 Maximum value oof U(x)=1125=NN=11251124957_1031678_ans_65a66c23db4d4a10994c93951292d9c4.jpg

Was this answer helpful?1Similar QuestionsQ1Given f2(x)+g2(x)+h2(x)9 and U(x)=3f(x)+4g(x)+10h(x),where f(x).g(x) and h(x) are continuous xR. If maximum value of U(x) is N. Then find N. View SolutionQ2A continuous real function f satisfies f(2x)=3f(x)xR. If 10f(x)dx=1, then the value of definite integral 21f(x)dx isView SolutionQ3Show that the roots of the equation(xa)(xb)(xc)f2(xa)g2(xb)h2(xc)+2fgh=0 are all real.View SolutionQ4Let u(x) and v(x) are differentiable functions such that u(x)v(x)=7.If u(x)v(x)=p and (u(x)v(x))=q then (p+qpq) has the value equal toView SolutionQ5If f:RR and g:RR, and f(x)+2g(x)f2(x)+g2(X)+54ThenView Solution

Từ khóa » F(x)=x^2+2x G(x)=x-9