Glycolaldehyde - Wikipedia

Organic compound (HOCH2–CHO) Glycolaldehyde
Glycolaldehyde
Glycolaldehyde
Names
Preferred IUPAC name Hydroxyacetaldehyde
Systematic IUPAC name Hydroxyethanal
Other names 2-Hydroxyacetaldehyde2-Hydroxyethanal
Identifiers
CAS Number
  • 141-46-8 checkY
3D model (JSmol)
  • Interactive image
ChEBI
  • CHEBI:17071 checkY
ChemSpider
  • 736 checkY
ECHA InfoCard 100.004.987 Edit this at Wikidata
KEGG
  • C00266 checkY
PubChem CID
  • 756
UNII
  • W0A0XPU08U checkY
CompTox Dashboard (EPA)
  • DTXSID4074693 Edit this at Wikidata
InChI
  • InChI=1S/C2H4O2/c3-1-2-4/h1,4H,2H2 checkYKey: WGCNASOHLSPBMP-UHFFFAOYSA-N checkY
  • InChI=1/C2H4O2/c3-1-2-4/h1,4H,2H2Key: WGCNASOHLSPBMP-UHFFFAOYAH
SMILES
  • O=CCO
Properties
Chemical formula C2H4O2
Molar mass 60.052 g/mol
Density 1.065 g/mL
Melting point 97 °C (207 °F; 370 K)
Boiling point 131.3 °C (268.3 °F; 404.4 K)
Related compounds
Related aldehydes 3-Hydroxybutanal

Lactaldehyde

Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). checkY verify (what is checkY☒N ?) Infobox references
Chemical compound

Glycolaldehyde is the organic compound with the formula HOCH2−CHO. It is the smallest possible molecule that contains both an aldehyde group (−CH=O) and a hydroxyl group (−OH). It is a highly reactive molecule that occurs both in the biosphere and in the interstellar medium. It is normally supplied as a white solid. Although it conforms to the general formula for carbohydrates, Cn(H2O)n, it is not generally considered to be a saccharide.[1]

Structure

[edit]

Glycolaldehyde as a gas is a simple monomeric structure. As a solid and molten liquid, it exists as a dimer. Collins and George reported the equilibrium of glycolaldehyde in water by using NMR.[2][3] In aqueous solution, it exists as a mixture of at least four species, which rapidly interconvert.[4]

Structures and distribution of glycolaldehyde as a 20% solution in water. Notice that the free aldehyde is a minor component.

In acidic or basic solution, the compound undergoes reversible tautomerization to form 1,2-dihydroxyethene.[5]

It is the only possible diose, a 2-carbon monosaccharide, although a diose is not strictly a saccharide. While not a true sugar, it is the simplest sugar-related molecule.[6] It is reported to taste sweet.[7]

Synthesis

[edit]

Glycolaldehyde is the second most abundant compound formed when preparing pyrolysis oil (up to 10% by weight).[8]

Glycolaldehyde can be synthesized by the oxidation of ethylene glycol using hydrogen peroxide in the presence of iron(II) sulfate.[9]

Biosynthesis

[edit]

It can form by action of ketolase on fructose 1,6-bisphosphate in an alternate glycolysis pathway. This compound is transferred by thiamine pyrophosphate during the pentose phosphate shunt.

In purine catabolism, xanthine is first converted to urate. This is converted to 5-hydroxyisourate, which decarboxylates to allantoin and allantoic acid. After hydrolyzing one urea, this leaves glycolureate. After hydrolyzing the second urea, glycolaldehyde is left. Two glycolaldehydes condense to form erythrose 4-phosphate,[citation needed] which goes to the pentose phosphate shunt again.

Role in formose reaction

[edit]

Glycolaldehyde is an intermediate in the formose reaction. In the formose reaction, two formaldehyde molecules condense to make glycolaldehyde. Glycolaldehyde then is converted to glyceraldehyde, presumably via initial tautomerization.[10] The presence of this glycolaldehyde in this reaction demonstrates how it might play an important role in the formation of the chemical building blocks of life. Nucleotides, for example, rely on the formose reaction to attain its sugar unit. Nucleotides are essential for life, because they compose the genetic information and coding for life.

Theorized role in abiogenesis

[edit]

It is often invoked in theories of abiogenesis.[11][12] In the laboratory, amino acids[13] and short dipeptides[14] have been shown to catalyze the formation of complex sugars from glycolaldehyde. For example, L-valyl-L-valine was used as a catalyst to form tetroses from glycolaldehyde. Theoretical calculations have additionally shown the feasibility of dipeptide-catalyzed synthesis of pentoses.[15] This formation showed stereospecific, catalytic synthesis of D-ribose, the only naturally occurring enantiomer of ribose. Since the detection of this organic compound, many theories have been developed related various chemical routes to explain its formation in stellar systems.

Formation of glycolaldehyde in star dust

It was found that UV-irradiation of methanol ices containing CO yielded organic compounds such as glycolaldehyde and methyl formate, the more abundant isomer of glycolaldehyde. The abundances of the products slightly disagree with the observed values found in IRAS 16293-2422, but this can be accounted for by temperature changes. Ethylene Glycol and glycolaldehyde require temperatures above 30 K.[16][17] The general consensus among the astrochemistry research community is in favor of the grain surface reaction hypothesis. However, some scientists believe the reaction occurs within denser and colder parts of the core. The dense core will not allow for irradiation as stated before. This change will completely alter the reaction forming glycolaldehyde.[18]

Formation in space

[edit] Main article: List of interstellar and circumstellar molecules
Artistic depiction of sugar molecules in the gas surrounding a young Sun-like star.[19]

The different conditions studied indicate how problematic it could be to study chemical systems that are light-years away. The conditions for the formation of glycolaldehyde are still unclear. At this time, the most consistent formation reactions seems to be on the surface of ice in cosmic dust.

Glycolaldehyde has been identified in gas and dust near the center of the Milky Way galaxy,[20] in a star-forming region,[21] and around a protostellar binary star, IRAS 16293-2422, 400 light years from Earth.[22][23] Observation of in-falling glycolaldehyde spectra 60 AU from IRAS 16293-2422 suggests that complex organic molecules may form in stellar systems prior to the formation of planets, eventually arriving on young planets early in their formation.[17]

Detection in space

[edit]

The interior region of a dust cloud is known to be relatively cold. With temperatures as cold as 4 Kelvin, the gases within the cloud will freeze and fasten themselves to the dust, which provides the reaction conditions conducive for the formation of complex molecules such as glycolaldehyde. When a star has formed from the dust cloud, the temperature within the core will increase. This will cause the molecules on the dust to evaporate and be released. The molecule will emit radio waves that can be detected and analyzed.[24] Glycolaldehyde was first identified in interstellar space in 2000.[20]

On October 23, 2015, researchers at the Paris Observatory announced the discovery of glycolaldehyde and ethyl alcohol on Comet Lovejoy, the first such identification of these substances in a comet.[25][26]

References

[edit]
  1. ^ Mathews, Christopher K. (2000). Biochemistry. Van Holde, K. E. (Kensal Edward), 1928-, Ahern, Kevin G. (3rd ed.). San Francisco, Calif.: Benjamin Cummings. p. 280. ISBN 978-0-8053-3066-3. OCLC 42290721.
  2. ^ "Prediction of Isomerization of Glycolaldehyde In Aqueous Solution by IBM RXN – Artificial Intelligence for Chemistry". 11 November 2019. Retrieved 2019-11-19.
  3. ^ Collins, G. C. S.; George, W. O. (1971). "Nuclear magnetic resonance spectra of glycolaldehyde". Journal of the Chemical Society B: Physical Organic: 1352. doi:10.1039/j29710001352. ISSN 0045-6470.
  4. ^ Yaylayan, Varoujan A.; Harty-Majors, Susan; Ismail, Ashraf A. (1998). "Investigation of the mechanism of dissociation of glycolaldehyde dimer (2,5-dihydroxy-1,4-dioxane) by FTIR spectroscopy". Carbohydrate Research. 309: 31–38. doi:10.1016/S0008-6215(98)00129-3.
  5. ^ Fedoroňko, Michal; Temkovic, Peter; Königstein, Josef; Kováčik, Vladimir; Tvaroška, Igor (1 December 1980). "Study of the kinetics and mechanism of the acid-base-catalyzed enolization of hydroxyacetaldehyde and methoxyacetaldehyde". Carbohydrate Research. 87 (1): 35–50. doi:10.1016/S0008-6215(00)85189-7.
  6. ^ Carroll, P.; Drouin, B.; Widicus Weaver, S. (2010). "The Submillimeter Spectrum of Glycolaldehyde" (PDF). Astrophys. J. 723 (1): 845–849. Bibcode:2010ApJ...723..845C. doi:10.1088/0004-637X/723/1/845. S2CID 30104627.
  7. ^ Shallenberger, R. S. (2012-12-06). Taste Chemistry. Springer Science & Business Media. ISBN 978-1-4615-2666-7.
  8. ^ Moha, Dinesh; Charles U. Pittman, Jr.; Philip H. Steele (10 March 2006). "Pyrolysis of Wood/Biomass for Bio-oil: A Critical Review". Energy & Fuels. 206 (3): 848–889. doi:10.1021/ef0502397. S2CID 49239384.
  9. ^ {{Hans Peter Latscha, Uli Kazmaier und Helmut Alfons Klein : Organic Chemistry: Chemistry Basiswissen-II. Springer, Berlin; 6, vollständig überarbeitete Auflage 2008, ISBN 978-3-540-77106-7, S. 217}}
  10. ^ Kleimeier, N. Fabian; Eckhardt, André K.; Kaiser, Ralf I. (August 18, 2021). "Identification of Glycolaldehyde Enol (HOHC═CHOH) in Interstellar Analogue Ices". J. Am. Chem. Soc. 143 (34): 14009–14018. doi:10.1021/jacs.1c07978. PMID 34407613. S2CID 237215450.
  11. ^ Kim, H.; Ricardo, A.; Illangkoon, H. I.; Kim, M. J.; Carrigan, M. A.; Frye, F.; Benner, S. A. (2011). "Synthesis of Carbohydrates in Mineral-Guided Prebiotic Cycles". Journal of the American Chemical Society. 133 (24)): 9457–9468. doi:10.1021/ja201769f. PMID 21553892.
  12. ^ Benner, S. A.; Kim, H.; Carrigan, M. A. (2012). "Asphalt, Water, and the Prebiotic Synthesis of Ribose, Ribonucleosides, and RNA". Accounts of Chemical Research. 45 (12): 2025–2034. doi:10.1021/ar200332w. PMID 22455515. S2CID 10581856.
  13. ^ Pizzarello, Sandra; Weber, A. L. (2004). "Prebiotic amino acids as asymmetric catalysts". Science. 303 (5661): 1151. CiteSeerX 10.1.1.1028.833. doi:10.1126/science.1093057. PMID 14976304. S2CID 42199392.
  14. ^ Weber, Arthur L.; Pizzarello, S. (2006). "The peptide-catalyzed stereospecific synthesis of tetroses: A possible model for prebiotic molecular evolution". Proceedings of the National Academy of Sciences of the USA. 103 (34): 12713–12717. Bibcode:2006PNAS..10312713W. doi:10.1073/pnas.0602320103. PMC 1568914. PMID 16905650.
  15. ^ Cantillo, D.; Ávalos, M.; Babiano, R.; Cintas, P.; Jiménez, J. L.; Palacios, J. C. (2012). "On the Prebiotic Synthesis of D-Sugars Catalyzed by L-Peptides Assessments from First-Principles Calculations". Chemistry: A European Journal. 18 (28): 8795–8799. doi:10.1002/chem.201200466. PMID 22689139.
  16. ^ Öberg, K. I.; Garrod, R. T.; van Dishoeck, E. F.; Linnartz, H. (September 2009). "Formation rates of complex organics in UV irradiation CH_3OH-rich ices. I. Experiments". Astronomy and Astrophysics. 504 (3): 891–913. arXiv:0908.1169. Bibcode:2009A&A...504..891O. doi:10.1051/0004-6361/200912559. S2CID 7746611.
  17. ^ a b Jørgensen, J. K.; Favre, C.; Bisschop, S.; Bourke, T.; Dishoeck, E.; Schmalzl, M. (2012). "Detection of the simplest sugar, glycolaldehyde, in a solar-type protostar with ALMA" (PDF). The Astrophysical Journal. eprint. 757 (1): L4. arXiv:1208.5498. Bibcode:2012ApJ...757L...4J. doi:10.1088/2041-8205/757/1/L4. S2CID 14205612.
  18. ^ Woods, P. M; Kelly, G.; Viti, S.; Slater, B.; Brown, W. A.; Puletti, F.; Burke, D. J.; Raza, Z. (2013). "Glycolaldehyde Formation via the Dimerisation of the Formyl Radical". The Astrophysical Journal. 777 (50): 90. arXiv:1309.1164. Bibcode:2013ApJ...777...90W. doi:10.1088/0004-637X/777/2/90. S2CID 13969635.
  19. ^ "Sweet Result from ALMA". ESO Press Release. Retrieved 3 September 2012.
  20. ^ a b Hollis, J. M.; Lovas, F. J.; Jewell, P. R. (10 September 2000). "Interstellar Glycolaldehyde: The First Sugar". The Astrophysical Journal. 540 (2): L107 – L110. Bibcode:2000ApJ...540L.107H. doi:10.1086/312881.
  21. ^ Beltrán, M. T.; Codella, C.; Viti, S.; Neri, R.; Cesaroni, R. (1 January 2009). "First Detection of Glycolaldehyde Outside the Galactic Center". The Astrophysical Journal. 690 (2): L93 – L96. arXiv:0811.3821. Bibcode:2009ApJ...690L..93B. doi:10.1088/0004-637X/690/2/L93.
  22. ^ Than, Ker (August 29, 2012). "Sugar Found In Space". National Geographic. Archived from the original on September 1, 2012. Retrieved August 31, 2012.
  23. ^ Staff (August 29, 2012). "Sweet! Astronomers spot sugar molecule near star". AP News. Retrieved August 31, 2012.
  24. ^ "Building blocks of life found around young star". Retrieved December 11, 2013.[dead link]
  25. ^ Biver, Nicolas; Bockelée-Morvan, Dominique; Moreno, Raphaël; Crovisier, Jacques; Colom, Pierre; Lis, Dariusz C.; Sandqvist, Aage; Boissier, Jérémie; Despois, Didier; Milam, Stefanie N. (2015). "Ethyl alcohol and sugar in comet C/2014 Q2 (Lovejoy)". Science Advances. 1 (9) e1500863. arXiv:1511.04999. Bibcode:2015SciA....1E0863B. doi:10.1126/sciadv.1500863. PMC 4646833. PMID 26601319.
  26. ^ "Researchers find ethyl alcohol and sugar in a comet ! -".
[edit]
  • "Cold Sugar in Space Provides Clue to the Molecular Origin of Life". National Radio Astronomy Observatory. September 20, 2004. Retrieved December 20, 2006.
  • v
  • t
  • e
Types of carbohydrates
General
  • Aldose
  • Ketose
  • Furanose
  • Pyranose
Geometry
  • Anomer
  • Cyclohexane conformation
  • Epimer
  • Mutarotation
Monosaccharides
Dioses
  • Aldodiose
    • Glycolaldehyde
Trioses
  • Aldotriose
    • Glyceraldehyde
  • Ketotriose
    • Dihydroxyacetone
Tetroses
  • Aldotetroses
    • Erythrose
    • Threose
  • Ketotetrose
    • Erythrulose
Pentoses
  • Aldopentoses
    • Arabinose
    • Lyxose
    • Ribose
    • Xylose
  • Ketopentoses
    • Ribulose
    • Xylulose
  • Deoxy sugars
    • Deoxyribose
Hexoses
  • Aldohexoses
    • Allose
    • Altrose
    • Galactose
    • Glucose
    • Gulose
    • Idose
    • Mannose
    • Talose
  • Ketohexoses
    • Fructose
    • Psicose
    • Sorbose
    • Tagatose
  • Deoxy sugars
    • Fucose
    • Fuculose
    • Rhamnose
Heptoses
  • Ketoheptoses
    • Mannoheptulose
    • Sedoheptulose
Above 7
  • Octoses
  • Nonoses
    • Neuraminic acid
Multiple
Disaccharides
  • Cellobiose
  • Isomaltose
  • Isomaltulose
  • Lactose
  • Lactulose
  • Maltose
  • Sucrose
  • Trehalose
  • Turanose
Trisaccharides
  • Maltotriose
  • Melezitose
  • Raffinose
Tetrasaccharides
  • Stachyose
Other oligosaccharides
  • Acarbose
  • Fructooligosaccharide (FOS)
  • Galactooligosaccharide (GOS)
  • Isomaltooligosaccharide (IMO)
  • Maltodextrin
Polysaccharides
  • Beta-glucan
    • Oat beta-glucan
    • Lentinan
    • Sizofiran
    • Zymosan
    • Cellulose
    • Chitin
  • Chitosan
  • Dextrin / Dextran
  • Fructose / Fructan
    • Inulin
  • Galactose / Galactan
  • Glucose / Glucan
    • Glycogen
  • Hemicellulose
  • Levan beta 2→6
  • Lignin
  • Mannan
  • Pectin
  • Starch
    • Amylopectin
    • Amylose
  • Xanthan gum
  • Category
  • v
  • t
  • e
Molecules detected in outer space
Molecules
Diatomic
  • Aluminium monochloride
  • Aluminium monofluoride
  • Aluminium(II) oxide
  • Argonium
  • Carbon cation
  • Carbon monophosphide
  • Carbon monosulfide
  • Carbon monoxide
  • Cyano radical
  • Diatomic carbon
  • Fluoromethylidynium
  • Helium hydride ion
  • Hydrogen chloride
  • Hydrogen fluoride
  • Hydrogen (molecular)
  • Hydroxyl radical
  • Imidogen
  • Iron(II) oxide
  • Magnesium monohydride
  • Methylidyne radical
  • Nitric oxide
  • Nitrogen (molecular)
  • Oxygen (molecular)
  • Phosphorus monoxide
  • Phosphorus mononitride
  • Potassium chloride
  • Silicon carbide
  • Silicon monoxide
  • Silicon monosulfide
  • Sodium chloride
  • Sodium iodide
  • Sulfanyl
  • Sulfur mononitride
  • Sulfur monoxide
  • Titanium(II) oxide
Triatomic
  • Aluminium(I) hydroxide
  • Aluminium isocyanide
  • Amino radical
  • Carbon dioxide
  • Carbonyl sulfide
  • CCP radical
  • Chloronium
  • Diazenylium
  • Dicarbon monoxide
  • Disilicon carbide
  • Ethynyl radical
  • Formyl radical
  • Hydrogen cyanide (HCN)
  • Hydrogen isocyanide (HNC)
  • Hydrogen sulfide
  • Hydroperoxyl
  • Iron cyanide
  • Isoformyl
  • Magnesium cyanide
  • Magnesium isocyanide
  • Methylene
  • Methylidynephosphane
  • N2H+
  • Nitrous oxide
  • Nitroxyl
  • Ozone
  • Potassium cyanide
  • Sodium cyanide
  • Sodium hydroxide
  • Silicon carbonitride
  • c-Silicon dicarbide
  • SiNC
  • Sulfur dioxide
  • Thioformyl
  • Thioxoethenylidene
  • Titanium dioxide
  • Tricarbon
  • Trihydrogen cation
  • Water
Fouratoms
  • Acetylene
  • Ammonia
  • Cyanoethynyl
  • Formaldehyde
  • Fulminic acid
  • HCCN
  • Hydrogen peroxide
  • Hydromagnesium isocyanide
  • Isocyanic acid
  • Isothiocyanic acid
  • Ketenyl
  • Methyl cation
  • Methyl radical
  • Methylene amidogen
  • Propynylidyne
  • Protonated carbon dioxide
  • Protonated hydrogen cyanide
  • Silicon tricarbide
  • Thiocyanic acid
  • Thioformaldehyde
  • Tricarbon monosulfide
  • Tricarbon monoxide
Fiveatoms
  • Ammonium ion
  • Butadiynyl
  • Carbodiimide
  • Cyanamide
  • Cyanoacetylene
  • Cyanoformaldehyde
  • Cyanomethyl
  • Cyclopropenylidene
  • Formic acid
  • Isocyanoacetylene
  • Ketene
  • Methane
  • Methoxy radical
  • Methylenimine
  • Propadienylidene
  • Protonated formaldehyde
  • Silane
  • Silicon-carbide cluster
Sixatoms
  • Acetonitrile
  • Cyanobutadiynyl radical
  • Cyclopropenone
  • Diacetylene
  • E-Cyanomethanimine
  • Ethylene
  • Formamide
  • HC4N
  • Ketenimine
  • Methanethiol
  • Methanol
  • Methyl isocyanide
  • Pentynylidyne
  • Propynal
  • Protonated cyanoacetylene
Sevenatoms
  • Acetaldehyde
  • Acrylonitrile
    • Vinyl cyanide
  • Cyanodiacetylene
  • Ethylene oxide
  • Glycolonitrile
  • Hexatriynyl radical
  • Methyl isocyanate
  • Methylamine
  • Propyne
  • Vinyl alcohol
Eightatoms
  • Acetic acid
  • Acrolein
  • Aminoacetonitrile
  • Cyanoallene
  • Ethanimine
  • Glycolaldehyde
  • Hexapentaenylidene
  • Methyl formate
  • Methylcyanoacetylene
Nineatoms
  • Acetamide
  • Cyanohexatriyne
  • Dimethyl ether
  • Ethanethiol
  • Ethanol
  • Methyldiacetylene
  • N-Methylformamide
  • Octatetraynyl radical
  • Propene
  • Propionitrile
Tenatomsor more
  • Acetone
  • Benzene
  • Benzonitrile
  • Buckminsterfullerene (C60, C60+, fullerene, buckyball)
  • Butyronitrile
  • C70 fullerene
  • Cyanodecapentayne
  • Ethyl formate
  • Ethylene glycol
  • Heptatrienyl radical
  • Methyl acetate
  • Methyl-cyano-diacetylene
  • Methyltriacetylene
  • Propionaldehyde
  • Pyrimidine
Deuteratedmolecules
  • Ammonia
  • Ammonium ion
  • Formaldehyde
  • Formyl radical
  • Heavy water
  • Hydrogen cyanide
  • Hydrogen deuteride
  • Hydrogen isocyanide
  • N2D+
  • Propyne
  • Trihydrogen cation
Unconfirmed
  • Anthracene
  • Dihydroxyacetone
  • Glycine
  • Graphene
  • H2NCO+
  • Hemolithin
  • Linear C5
  • Methoxyethane
  • Naphthalene cation
  • Phosphine
  • Pyrene
  • Silylidyne
Related
  • Abiogenesis
  • Astrobiology
  • Astrochemistry
  • Atomic and molecular astrophysics
  • Chemical formula
  • Circumstellar dust
  • Circumstellar envelope
  • Cosmic dust
  • Cosmic ray
  • Cosmochemistry
  • Diffuse interstellar band
  • Earliest known life forms
  • Extraterrestrial life
  • Extraterrestrial liquid water
  • Forbidden mechanism
  • Homochirality
  • Intergalactic dust
  • Interplanetary medium
  • Interstellar medium
  • Iron–sulfur world theory
  • Kerogen
  • Molecules in stars
  • Nexus for Exoplanet System Science
  • Organic compound
  • Outer space
  • PAH world hypothesis
  • Photodissociation region
  • Polycyclic aromatic hydrocarbon (PAH)
  • Pseudo-panspermia
  • RNA world hypothesis
  • Spectroscopy
  • Tholin
  • Category:Astrochemistry
  • Outer space portal
  • Astronomy portal
  • Chemistry portal
  • v
  • t
  • e
Astrobiology
Disciplines
  • Astrochemistry
  • Astrophysics
  • Atmospheric sciences
  • Bioastronautics
  • Biochemistry
  • Evolutionary biology
  • Exoplanetology
  • Geomicrobiology
  • Microbiology
  • Paleontology
  • Planetary oceanography
  • Planetary science
Main topics
  • Abiogenesis
  • Allan Hills 84001
  • Biomolecule
  • Biosignature
  • Drake equation
  • Earliest known life forms
  • Earth analog
  • Extraterrestrial life
  • Extraterrestrial sample curation
  • Extremophiles
  • Hypothetical types of biochemistry
  • List of microorganisms tested in outer space
  • Ocean planet
  • Panspermia
  • Planetary protection
  • Search for extraterrestrial intelligence (SETI)
  • Yamato meteorite
Planetaryhabitability
  • Circumstellar habitable zone
  • Earth analog
  • Extraterrestrial liquid water
  • Galactic habitable zone
  • Habitability of binary star systems
  • Habitability of natural satellites
  • Habitability of neutron star systems
  • Habitability of red dwarf systems
  • Habitability of K-type main-sequence star systems
  • Habitability of yellow dwarf systems
  • Habitability of F-type main-sequence star systems
  • Habitable zone for complex life
  • List of potentially habitable exoplanets
  • Tholin
  • Superhabitable planet
Space missions
Earth orbit
  • BIO
  • BIOCORE
  • Biolab
  • Bion
  • BIOPAN
  • Biosatellite program
  • E-MIST
  • ERA
  • Eu:CROPIS
  • EXOSTACK
  • EXPOSE
  • Lunar Micro Ecosystem
  • O/OREOS
  • OREOcube
  • Tanpopo
  • VEGGIE
Mars
  • Beagle 2
  • Fobos-Grunt
  • Mars Science Laboratory
    • Curiosity rover
  • Mars 2020
    • Perseverance rover
  • Phoenix
  • Tianwen-1
    • Zhurong rover
  • Trace Gas Orbiter
  • Viking
Comets andasteroids
  • Hayabusa2
  • OSIRIS-REx
  • Rosetta
Heliocentric
  • BioSentinel
Europa
  • Europa Clipper
  • Jupiter Icy Moons Explorer (JUICE)
Planned
  • Dragonfly
  • ExoMars
    • Rosalind Franklin rover
Proposed
  • Enceladus Orbilander
  • L4
  • Breakthrough Enceladus
  • BRUIE
  • CAESAR
  • Enceladus Explorer
  • Enceladus Life Finder‎
  • Enceladus Life Signatures and Habitability
  • Europa Lander
  • ExoLance
  • Explorer of Enceladus and Titan
  • Icebreaker Life
  • Journey to Enceladus and Titan
  • Laplace-P
  • Life Investigation For Enceladus
  • Mars sample return mission
  • Oceanus
  • THEO
  • Trident
Cancelled and undeveloped
  • Astrobiology Field Laboratory
  • Beagle 3
  • Biological Oxidant and Life Detection
  • Kazachok
  • Living Interplanetary Flight Experiment
  • Mars Astrobiology Explorer-Cacher
  • MELOS
  • Northern Light
  • Red Dragon
  • Terrestrial Planet Finder
Institutionsand programs
  • Astrobiology Society of Britain
  • Astrobiology Science and Technology for Exploring Planets
  • Breakthrough Initiatives
    • Breakthrough Listen
    • Breakthrough Message
    • Breakthrough Starshot
  • Carl Sagan Institute
  • Center for Life Detection Science
  • European Astrobiology Network Association
  • NASA Astrobiology Institute
  • Nexus for Exoplanet System Science
  • Ocean Worlds Exploration Program
  • Spanish Astrobiology Center‎
  • Category
  • Commons
  • v
  • t
  • e
Origin of life
History of research
  • Panspermia (5th century BC)
  • Spontaneous generation (4th century BC)
  • Primordial soup (19th century)
Prebiotic synthesis
  • Pseudo-panspermia
  • Miller–Urey experiment
  • Formamide-based prebiotic chemistry
  • Alternative abiogenesis scenarios
Protocells
  • GADV-protein world
  • Clay hypothesis
  • Iron–sulfur world
    • Primordial sandwich
  • PAH world
  • Peptide-RNA world
  • Quasispecies model
  • RNA world
Earliest organisms
  • Earliest known life forms
  • Last universal common ancestor (LUCA)
Research
  • Astrobiology
  • Paleobiology
Portals:
  • Astronomy
  • icon Biology

Từ khóa » C Hoch 2