Gọi Z1;z2 Là Hai Nghiệm Của Phương Trình 2z2- 3z + 2 = 0 Trên Tập Số ...
Có thể bạn quan tâm
- Câu hỏi:
Gọi z1;z2 là hai nghiệm của phương trình 2z2- 3z + 2 = 0 trên tập số phức. Tính \( = \sqrt {z_1^2 + {z_1}{z_2} + z_2^2} \)
- A. \(P = \frac{{3\sqrt 3 }}{4}\)
- B. \(P = \frac{{\sqrt 5 }}{2}\)
- C. \(P = \frac{{\sqrt 3 }}{4}\)
- D. \(P = \frac{5}{{\sqrt 2 }}\)
Lời giải tham khảo:
Đáp án đúng: B
Hãy suy nghĩ và trả lời câu hỏi trước khi HOC247 cung cấp đáp án và lời giải
ATNETWORK
Mã câu hỏi: 56531
Loại bài: Bài tập
Chủ đề :
Môn học: Toán Học
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
-
Đề thi HK2 môn Toán 12 Trường THPT Trần Đại Nghĩa - ĐắkLắk năm học 2017 - 2018
50 câu hỏi | 90 phút Bắt đầu thi
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC
- Trong không gian Oxyz cho ba điểm A(l;-3;4), B(l;y;-l), C(x;4;3). Khi đó ba điểm A, B, Cthẳng hàng thi 10x + y bằng:
- Trong không gian Oxyz, cho tam giác ABC, với A(-3; 2; 7), B(4; -5; 3), C(2; -3; -1).
- Gọi z1;z2 là hai nghiệm của phương trình 2z2- 3z + 2 = 0 trên tập số phức.
- Cho \(\int_0^3 {\left( {x - 1} \right){3^{{x^2} - 2x}}dx = \frac{a}{{\ln b}}} ,\,\,\left( {a,b \in N*} \right)\). Tính S = a - b
- Trong không gian với hệ tọa độ Oxyz cho I(4; -1; 2), A(1;-2; -4). Phương trình mặt cầu (S) có tâ I và đi qua A là:
- Cho số phức z thỏa mãn \(2z + \left( {1 + i} \right)\overline z = 5 + 3i\). Tính |z|
- Trong không gian với hệ tọa độ Oxyz. Cho M(1; -2;-3) và mặt phẳng \(\left( \beta \right):2x + 3y - z + 15 = 0\).
- Cho 3 vecto \(\overrightarrow a = \left( {3;5; - 2} \right),\overrightarrow b = \left( {5; - 3;4} \right),\overrightarrow c = \
- Phương trình mặt phẳng (P) đi qua 2 điểm A(2; -1; 4), B(3; 2; -1) và song song với đường thẳng \(\Delta :\frac{x}{1} = \frac{
- Kí hiệu A, B, C lần lượt là các điểm biểu diễn hình học của các số phức \({z_1} = 1 + i,{z_2} = {\left( {1 + i} \right
- Cho số phức \(z = {\left( {\sqrt 2 - 3i} \right)^2}\). Tìm phần thực và phần ảo của số phức z
- Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): (m2 - 1)x - 4y - 8z + 6 = 0 và mặt phẳng (Q): 2x - y - 2z + 4 = 0
- Số thực x,y thỏa mãn 3 +(3 - y)i = (x - 1) + 5i là:
- Cho \(\int_0^1 {\left( {2x + 1} \right){e^x}dx} = ae + b\). Tính T = ab
- Trong không gian với hệ tọa độ Oxyz, tọa độ hình chiếu vuông góc của điểm M(2; 0; 1) trên đường thẳng d :\(\frac{{x -
- Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu \(\left( S \right):{\left( {x - 3} \right)^2} + {y^2} + {\left( {z - 2} \right)^
- Điểm biểu diễn của số phức \(z = \frac{1}{{2 + 3i}}\) là
- Cho số phức z thỏa mãn \(|z| = \frac{{\sqrt 2 }}{2}\) và điểm A trong hình vẽ bên là điểm biểu diễn của z.
- Trong không gian với hệ tọa độ Oxyz, phương trình tham số của đường thẳng d đi qua điểm A(1;2;-5) và có vectơ chỉ phư
- Trong không gian với hệ tọa độ Oxyz, cho điểm A(1;2;3) và hai đường \({d_1}:\frac{{x - 2}}{2} = \frac{{y + 2}}{{ - 1}} = \frac{{z -
- Cho số phức z1 = 1 - 2i, z2 = 2 + i. Môđun của số phức w=z1 - 2z2 + 3 là?
- Cho hai đường thẳng tìm vị trí tương đối của d1 và d2
- Tìm m để hình phẳng giới hạn bởi đồ thị hàm số y = x2 + 2mx +m2 + 1 , trục Ox, trục Oy và đường thẳng x = 2
- Thể tích khối tròn xoay được tạo thành khi quay hình phẳng (H) được giới hạn bởi các đường sau:y = f(x), trục Ox
- Trong không gian Oxyz cho 3 điểm A(1;-2;1) , B(-1;3;3) và C(2;-4;2).
- Một vật chuyển động với vận tốc v(t) = 2 + 2t (m / s) .
- Gọi z1; z2; z3; z4 là các nghiệm phức của phương trình z4 - 2z2 - 3 = 0.
- Cho \(\int_0^{\frac{\pi }{4}} {\sin 2x{e^{\cos 2x}}dx = \frac{1}{2}\left( {ae + b} \right)} \). Tính S = a - b
- Cho đồ thị hàm số y = f(x). Diện tích S của hình phẳng (phần tô đậm trong hình dưới) là:
- Gọi F(x) là nguyên hàm của hàm số f (x ) đoạn [a; b]. Chọn câu khẳng định đúng ?
- Cho \(\int_0^2 {\frac{{{x^2} + 5}}{{{x^2} + 4}} = a\pi + b,\left( {a,b \in R} \right)} \). Hãy tính ab
- Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(2;3;0), \(B\left( {0; - \sqrt 2 ;0} \right),M\left( {\frac{6}{5}; - \sqrt 2 ;
- Cho \(\int_0^1 {\frac{{2x - 1}}{{x + 1}}dx} = a + b\ln c\) với \(a,b,c \in Z\). Tính S = a + b + c
- Cho \(\int_0^1 {\left( {2x + 1} \right)\ln \left( {x + 1} \right)dx} = a{\mathop{\rm lnb}\nolimits} + c\) với \(a,b,c \in Q\).
- Trong không gian với hệ tọa độ Oxyz , cho mặt cầu (S) có tâm I (a; b; c), A < 3 .
- Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \(d:\frac{{x - 3}}{1} = \frac{{y + 1}}{{ - 1}} = \frac{z}{2}\) và mặt ph�
- Nghiệm của phương trình \({z^2} - z + 3 = 0\) trên tập số phức là?
- Tính \(I = \int_0^{\frac{\pi }{4}} {\sin 2xdx} \)
- Trong không gian với hệ tọa độ Oxyz, đường thẳng d đi qua điểm A(1;2;3) và vuông góc với mặt phẳng (P):2x + 2y + z + 2018
- Cho \(\int_0^2 {f\left( x \right)} dx = 5\). Khi đó \(\int_0^2 {\frac{{f\left( x \right)}}{5}dx} \)
- Tổng phần thực và phần ảo của số phức z = (1 + 2i)(3 - i) là:
- Trong không gian Oxyz, cho điểm I( 3; 1 -2) và mặt phẳng (P): 2x - 2y - z + 3 = 0 .
- Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P): 2x - y + 2z - 14 = 0 và mặt cầu (S): \({x^2} + {y^2} + {z^2} -
- Hàm số f(x) liên tục trên đoạn [0; 1], f(1) - 2f(0) = 10 và \(\int_0^1 {f\left( x \right)dx = 2} \).
- Diện tích hình phẳng giới hạn bởi đồ thị hàm số y = x2 -1 , trục Ox và hai đường thẳng x = 0, x = 2 bằng
- Tìm tập hợp điểm biểu diễn số phức z thỏa mãn |z + 2 - i| = 3
- Cho số phức z thỏa mãn |z - 2 - 3i| = 1. Gía trị lớn nhất của \(\left| {\overline z + 1 + i} \right|\) là
- Trong không gian Oxyz, cho điểm M (1;2;3).
- Tính thể tích V của vật thể tròn xoay sinh ra khi cho hình phẳng giới hạn bởi các đường \(y = \frac{1}{x},y = 0,x = 1,x
- Diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = \frac{2}{{{{\left( {x + 1} \right)}^2}}}\), trục hoành, đường th
XEM NHANH CHƯƠNG TRÌNH LỚP 12
Toán 12
Lý thuyết Toán 12
Giải bài tập SGK Toán 12
Giải BT sách nâng cao Toán 12
Trắc nghiệm Toán 12
Giải tích 12 Chương 3
Đề thi giữa HK1 môn Toán 12
Ngữ văn 12
Lý thuyết Ngữ Văn 12
Soạn văn 12
Soạn văn 12 (ngắn gọn)
Văn mẫu 12
Soạn bài Người lái đò sông Đà
Đề thi giữa HK1 môn Ngữ Văn 12
Tiếng Anh 12
Giải bài Tiếng Anh 12
Giải bài Tiếng Anh 12 (Mới)
Trắc nghiệm Tiếng Anh 12
Unit 7 Lớp 12 Economic Reforms
Tiếng Anh 12 mới Review 1
Đề thi giữa HK1 môn Tiếng Anh 12
Vật lý 12
Lý thuyết Vật Lý 12
Giải bài tập SGK Vật Lý 12
Giải BT sách nâng cao Vật Lý 12
Trắc nghiệm Vật Lý 12
Vật lý 12 Chương 3
Đề thi giữa HK1 môn Vật Lý 12
Hoá học 12
Lý thuyết Hóa 12
Giải bài tập SGK Hóa 12
Giải BT sách nâng cao Hóa 12
Trắc nghiệm Hóa 12
Hoá Học 12 Chương 4
Đề thi giữa HK1 môn Hóa 12
Sinh học 12
Lý thuyết Sinh 12
Giải bài tập SGK Sinh 12
Giải BT sách nâng cao Sinh 12
Trắc nghiệm Sinh 12
Ôn tập Sinh 12 Chương 5
Đề thi giữa HK1 môn Sinh 12
Lịch sử 12
Lý thuyết Lịch sử 12
Giải bài tập SGK Lịch sử 12
Trắc nghiệm Lịch sử 12
Lịch Sử 12 Chương 2 Lịch Sử VN
Đề thi giữa HK1 môn Lịch Sử 12
Địa lý 12
Lý thuyết Địa lý 12
Giải bài tập SGK Địa lý 12
Trắc nghiệm Địa lý 12
Địa Lý 12 VĐSD và BVTN
Đề thi giữa HK1 môn Địa lý 12
GDCD 12
Lý thuyết GDCD 12
Giải bài tập SGK GDCD 12
Trắc nghiệm GDCD 12
GDCD 12 Học kì 1
Đề thi giữa HK1 môn GDCD 12
Công nghệ 12
Lý thuyết Công nghệ 12
Giải bài tập SGK Công nghệ 12
Trắc nghiệm Công nghệ 12
Công nghệ 12 Chương 3
Đề thi giữa HK1 môn Công nghệ 12
Tin học 12
Lý thuyết Tin học 12
Giải bài tập SGK Tin học 12
Trắc nghiệm Tin học 12
Tin học 12 Chương 2
Đề thi giữa HK1 môn Tin học 12
Cộng đồng
Hỏi đáp lớp 12
Tư liệu lớp 12
Xem nhiều nhất tuần
Video: Vợ nhặt của Kim Lân
Video ôn thi THPT QG môn Toán
Video ôn thi THPT QG môn Văn
Video ôn thi THPT QG môn Sinh
Video ôn thi THPT QG môn Vật lý
Video ôn thi THPT QG Tiếng Anh
Video ôn thi THPT QG môn Hóa
Tây Tiến
Ai đã đặt tên cho dòng sông
Sóng- Xuân Quỳnh
Khái quát văn học Việt Nam từ đầu CMT8 1945 đến thế kỉ XX
Người lái đò sông Đà
Quá trình văn học và phong cách văn học
Đất Nước- Nguyễn Khoa Điềm
Đàn ghi ta của Lor-ca
YOMEDIA YOMEDIA ×Thông báo
Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.
Bỏ qua Đăng nhập ×Thông báo
Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.
Đồng ý ATNETWORK ON QC Bỏ qua >>Từ khóa » Gọi Z1 Z2 Z3 Là Các Nghiệm Của Phương Trình
-
Gọi Z1,z2,z3 Là Các Nghiệm Của Phương Trình Iz^3-2z^2+(1-i)z
-
Gọi Z1, Z2, Z3 Là Các Nghiệm Của Phương Trình Iz3 – 2z2 + (1
-
Gọi Z1,z2,z3 Là Các Nghiệm Của Phương Trình Iz3-2z2+(1-i)z+i=0.
-
Gọi Z1,z2,z3 Là Các Nghiệm Của Phương Trình Iz ...
-
Gọi Z1 , Z2 , Z3 Là Ba Nghiệm Của Phương Trình Z3−21+iz2+9+4iz ...
-
Gọi Z1 , Z2 , Z3 Là Ba Nghiệm Của Phương Trình Z3+z2+5z−7=0 ...
-
Gọi Z1, Z2, Z3 Là Các Nghiệm Của Phương Trình Iz^3 2 2z^2 + (1-i)z + I ...
-
Gọi Z1, Z2, Z3 Là Ba Nghiệm Của Phương Trình \({z^3}
-
Gọi Z1,z2,z3,z4 Là Các Nghiệm Phức Của Phương Trình ( Z^2 + Z )^2 + 4
-
Gọi Z1,z2,z3 Là Các Nghiệm Của Phương Trình Iz^3 - 2rmz^2 + ( 1 - I )z
-
Gọi Z1 Và Z2 Là Các Nghiệm Của Phương Trình Z^2-4z+9=0, Số Phức ...
-
Kí Hiệu Z1, Z2, Z3, Z4 Là Bốn Nghiệm Phức Của Phương Trình Z^4...
-
Kí Hiệu Z1, Z2, Z3 Và Z4 Là Bốn Nghiệm Phức Của Phương Trình Z^4 ...
-
Gọi Z1 Z2 Là 2 Nghiệm Phức Của Phương Trình Z^2+z+1=0