Graphs Of Hyperbolic Functions - Free Mathematics Tutorials
Hyperbolic Sine Function : \( \sinh(x) = \dfrac{e^x - e^{-x}}{2} \)
The graph of \( y = \sinh(x) \) is shown below along with the graphs of \( y = \dfrac{e^x}{2} \) and \( y = - \dfrac{e^{-x}}{2} \) for comparison Domain: \[ (-\infty , \infty) \] Range: \[ (-\infty , \infty) \] Odd function since: \(\sinh(-x) = - \sinh(x) \)
Hyperbolic Cosine Function : \( \cosh(x) = \dfrac{e^x + e^{-x}}{2} \)
The graph of \( y = \cosh(x) \) is shown below along with the graphs of \( y = \dfrac{e^x}{2} \) and \( y = \dfrac{e^{-x}}{2} \) for comparison Domain: \[ (-\infty , \infty) \] Range: \[ [1 , \infty) \] Even function since: \(\sinh(-x) = \sinh(x) \)
Hyperbolic Tangent Function : \( \tanh(x) = \dfrac{\sinh(x)}{\cosh(x)} = \dfrac{e^x - e^{-x}}{e^x + e^{-x}} \)
Domain: \[ (-\infty , \infty) \] Range: \[ (-1 , 1) \] Odd function since: \( \tanh(-x) = - \tanh(x) \} \)Horizontal asymptote: \( y = 1 \) as \( x \) increases indefinitely
Horizontal asymptote: \( y = - 1 \) as \( x \) decreases indefinitely
Odd function since: \(\tanh(-x) = - \tanh(x) \)
Hyperbolic Cotangent Function : \( \coth(x) = \dfrac{\cosh(x)}{\sinh(x)} = \dfrac{e^x + e^{-x}}{e^x - e^{-x}} \)
Domain: \[ (-\infty , 0) \cup (0, \infty) \] Range: \[ (-\infty , -1) \cup (1 , \infty) \] Odd function since: \( \coth(-x) = - \coth(x) \)
Horizontal asymptote: \( y = 1 \) as \( x \) increases indefinitely
Horizontal asymptote: \( y = - 1 \) as \( x \) decreases indefinitely
Vertical asymptote: \[ x = 0 \] Odd function since: \(\coth(-x) = - \coth(x) \)
Hyperbolic Secant Function : \( \text{sech}(x) = \dfrac{1}{\cosh(x)} = \dfrac{2}{e^x + e^{-x}} \)
Domain: \[ (-\infty , \infty) \] Range: \[ (0 , 1] \] Even function since: \( \text{sech}(-x) = \text{sech}(x) \) Horizontal asymptote: \( y = 0 \) as \( x \) increases or decreases indefinitely
Hyperbolic Cosecant Function : \( \text{csch}(x) = \dfrac{1}{\sinh(x)} = \dfrac{2}{e^x - e^{-x}} \)
Domain: \[ (-\infty , 0) \cup (0 , \infty) \] Range: \[ (-\infty , 0) \cup (0 , \infty) \] Odd function since : \[ \text{csch}(-x) = - \text{csch}(x) \] Horizontal asymptote: \( y = 0 \) as \( x \) increases or decreases indefinitely Vertical asymptote: \( x = 0 \)
Từ khóa » Sinh X Graph
-
[PDF] Hyperbolic Functions - Mathcentre
-
Graphs Of Sinh X, Cosh X And Tanh X | ExamSolutions - YouTube
-
Hyperbolic Functions: Graphing Sinh(x) - YouTube
-
Hyperbolic Functions - Math Is Fun
-
SINH Function Calculator And Graph - MedCalc Software
-
Hyperbolic Functions - Wikipedia
-
Plot (cosh(x)) + 3*(sinh(x)) - Wolfram Alpha
-
Graphs Of Hyperbolic Functions | Definition, Examples, Diagrams
-
Graphs Of Sinh(x), Cosh(x) And Tanh(x) - ExamSolutions
-
Hyperbolic Sine - MATLAB Sinh - MathWorks
-
Hyperbolic Functions
-
Hyperbolic Functions
-
The Graph Of The Function F(x) = Sinh(x) + Cosh(x) Is Exponential. - Toppr