Gx=5x6+x5+9x3-12x-125. - Gauthmath

Math Resources/Math/

Question

Simplify  6xyz/2xy-y ·  (2x^2-7x+3)/3xz-9z  A, -4x^2 B. 2x C.  (3x^2-7)/4y  D.  (4x^2-2x)/2x-1 SHOW LESS0

Solution

user avatar imageAnswer The answer is **B. 2x** ExplanationStep 1: **Factor the numerator and denominator of each fraction.** The given expression is: $\frac{6xyz}{2xy - y} \cdot \frac{2x^2 - 7x + 3}{3xz - 9z}$ Factoring the numerator and denominator, we get: $\frac{6xyz}{y(2x - 1)} \cdot \frac{(2x - 1)(x - 3)}{3z(x - 3)}$ Step 2: **Cancel out common factors in the numerator and denominator.** We can cancel out the common factors (2x-1), (x-3), y, and 3z from the numerator and denominator: $\frac{6xyz}{y(2x - 1)} \cdot \frac{(2x - 1)(x - 3)}{3z(x - 3)} = \frac{6xyz}{y(2x-1)} \times \frac{(2x-1)(x-3)}{3z(x-3)} = \frac{6xyz(2x-1)(x-3)}{3yz(2x-1)(x-3)}$ Step 3: **Simplify the expression.** After canceling the common factors, we are left with: $\frac{6xyz}{3yz} = \frac{6}{3} \cdot \frac{x}{1} \cdot \frac{y}{y} \cdot \frac{z}{z} = 2x$ Click to rate:36(89 votes)Search questionBy textBy image/screenshotDrop your file here orClick Hereto upload

Từ khóa » G(x)=5x^6+x^5+9x^3-12x-125