Hàm Số Cơ Bản – Wikipedia Tiếng Việt
Có thể bạn quan tâm
Trong toán học, một hàm số cơ bản là một hàm một biến số và là tổ hợp của một số hữu hạn các phép toán số học (+ – × ÷), hàm mũ, logarit, hằng số và các nghiệm của phương trình đại số (tổng quát của căn bậc n).
Các hàm số cơ bản (của x) bao gồm:
- Lũy thừa của ....
- Căn của ....
- Hàm mũ:
- Logarit:
- Hàm lượng giác: ....
- Hàm lượng giác ngược: ....
- Hàm Hyperbolic: ....
- Tất cả các hàm số được tạo thành bằng cách thay x (trong một hàm số cơ bản) bởi bất kỳ một hàm số cơ bản nào khác.
- Tất cả các hàm số được tạo thành bằng cách cộng, trừ, nhân hay chia các hàm số cơ bản trước đó[1]
Từ định nghĩa trên ta có thể thấy rằng tập hợp các hàm cơ bản là đóng đối với các phép toán số học và phép hợp hàm. Nó cũng đóng đối với phép đạo hàm nhưng không đóng đối với phép tính giới hạn và chuỗi (tổng vô hạn).
Nên nhớ rằng, tập các hàm số cơ bản không đóng đối với phép tính nguyên hàm, như đã được chứng mình bởi định lý Liouville, có thể xem thêm về các nguyên hàm không cơ bản.
Một vài hàm số cơ bản, như căn thức, logarit hay lượng giác ngược không xác định trên toàn bộ mặt phẳng phức và có thể có nhiều giá trị khác nhau.
Các hàm số cơ bản lần đầu được Joseph Liouville trong một chuỗi các bài viết từ năm 1833 đến năm 1841.[2][3][4] Một nghiên cứu đại số về các hàm cơ bản cũng đã được Joseph Fels Ritt khởi xướng những năm 1930.[5]
Một vài ví dụ
[sửa | sửa mã nguồn]Các ví dụ của hàm số cơ bản bao gồm:
- Phép cộng, ví dụ: (x+1)
- Phép nhân, ví dụ: (2x)
- Hàm đa thức
Hàm số cuối cùng tương đương với , một hàm lượng giác ngược, trên toàn mặt phẳng phức. Do đó, nó là một hàm cơ bản.
Các hàm số không cơ bản
[sửa | sửa mã nguồn]Một ví dụ của hàm số không cơ bản là hàm sai số
Điều này không thể được nhìn thấy ngay lập tức, nhưng có thể được chứng minh sử dụng Thuật toán Risch.
- Có thể xem thêm các ví dụ khác tại Hàm số Liouville và Nguyên hàm không cơ bản.
Xem thêm
[sửa | sửa mã nguồn]- Biểu thức dạng đóng
- Định lý vi phân Galois
- Hàm số đại số
- Hàm số siêu việt
Ghi chú
[sửa | sửa mã nguồn]- ^ Ordinary Differential Equations. Dover. 1985. tr. 17. ISBN 0-486-64940-7.
- ^ Liouville 1833a.
- ^ Liouville 1833b.
- ^ Liouville 1833c.
- ^ Ritt 1950.
Nguồn tham khảo
[sửa | sửa mã nguồn]- Liouville, Joseph (1833a). "Premier mémoire sur la détermination des intégrales dont la valeur est algébrique". Journal de l'École Polytechnique. Quyển tome XIV. tr. 124–148.
- Liouville, Joseph (1833b). "Second mémoire sur la détermination des intégrales dont la valeur est algébrique". Journal de l'École Polytechnique. Quyển tome XIV. tr. 149–193.
- Liouville, Joseph (1833c). "Note sur la détermination des intégrales dont la valeur est algébrique". Journal für die reine und angewandte Mathematik. Quyển 10. tr. 347–359.
- Ritt, Joseph (1950). Differential Algebra. AMS.
- Rosenlicht, Maxwell (1972). "Integration in finite terms". American Mathematical Monthly. Quyển 79 số 9. tr. 963–972. doi:10.2307/2318066. JSTOR 2318066.
Nâng cao
[sửa | sửa mã nguồn]- Davenport, J. H.: What Might "Understand a Function" Mean. In: Kauers, M.; Kerber, M., Miner, R.; Windsteiger, W.: Towards Mechanized Mathematical Assistants. Springer, Berlin/Heidelberg 2007, p. 55-65. [1]
Liên kết ngoài
[sửa | sửa mã nguồn]- Elementary functions at Encyclopaedia of Mathematics
- Weisstein, Eric W., "Elementary function" từ MathWorld.
Từ khóa » Hàm Số Và Là Gì
-
Hàm Số – Wikipedia Tiếng Việt
-
Lý Thuyết: Khái Niệm Hàm Số
-
Hàm Số Và Những định Nghĩa Cơ Bản Nhất? - Hỏi Đáp Trực Tuyến
-
Hàm Số Là Gì? - Banhoituidap
-
Sự Khác Nhau Chính Xác Giữa Hàm Số Và Phương Trình Là Gì?
-
Bài 1 : KHÁI NIỆM HÀM SỐ | Toán Học Phổ Thông
-
Toán 10 - Khái Niệm Hàm Số. Hàm Số Là Gì? - O₂ Education
-
Lý Thuyết Nhắc Lại Và Bổ Sung Các Khái Niệm Về Hàm Số
-
Hàm Số Và ứng Dụng Kinh Tế (Function) - YouTube
-
Hàm Số Và Những Kiến Thức Cơ Bản - Toán Lớp 7 Là Chuyện Nhỏ
-
Nhắc Lại Và Bổ Sung Khái Niệm Hàm Số Và đồ Thị Hàm Số
-
Hàm Số Là Gì?cho Ví Dụ - Hoc24
-
Định Nghĩa Và Các Tính Chất Cơ Bản Của Hàm Số Liên Tục - Monkey
-
Hàm Số Là Gì? Đồ Thị Hàm Số, Thế Nào Là Hàm Số đồng Biến, Nghịch ...