Hệ Phương Trình Tuyến Tính Tổng Quát Và Khảo Sát Tổng Quát ... - Vted

Hệ phương trình tuyến tính tổng quát

Hệ phương trình tuyến tính tổng quát có dạng $\left\{ \begin{gathered} {a_{11}}{x_1} + {a_{12}}{x_2} + ... + {a_{1n}}{x_1} = {b_1} \hfill \\ {a_{12}}{x_1} + {a_{22}}{x_2} + ... + {a_{2n}}{x_n} = {b_2} \hfill \\ ... \hfill \\ {a_{m1}}{x_1} + {a_{m2}}{x_2} + ... + {a_{mn}}{x_n} = {b_m} \hfill \\ \end{gathered} \right..$

Với \[A = \left( {\begin{array}{*{20}{c}} {{a_{11}}}&{{a_{12}}}&{...}&{{a_{1n}}} \\ {{a_{21}}}&{{a_{22}}}&{...}&{{a_{2n}}} \\ {...}&{...}&{...}&{...} \\ {{a_{m1}}}&{{a_{m2}}}&{...}&{{a_{mn}}} \end{array}} \right),X = \left( {\begin{array}{*{20}{c}} {{x_1}} \\ {{x_2}} \\ {...} \\ {{x_n}} \end{array}} \right),B = \left( {\begin{array}{*{20}{c}} {{b_1}} \\ {{b_2}} \\ {...} \\ {{b_m}} \end{array}} \right),\overline A = \left( {\begin{array}{*{20}{c}} {{a_{11}}}&{{a_{12}}}&{...}&{{a_{1n}}}&{{b_1}} \\ {{a_{21}}}&{{a_{22}}}&{...}&{{a_{2n}}}&{{b_2}} \\ {...}&{...}&{...}&{...}&{...} \\ {{a_{m1}}}&{{a_{m2}}}&{...}&{{a_{mn}}}&{{b_m}} \end{array}} \right).\]

Ta gọi là hệ phương trình tuyến tính gồm $m$ phương trình và $n$ ẩn.

Hệ phương trình đã cho có thể được viết dưới dạng ma trận $AX=B.$

Đặt $A_j^c = \left( {\begin{array}{*{20}{c}} {{a_{1j}}} \\ {{a_{2j}}} \\ {...} \\ {{a_{mj}}} \end{array}} \right),j = 1,2,...,n$ là véctơ cột thứ j của ma trận hệ số A. Khi đó hệ phương trình

Hệ phương trình đã cho có thể được viết dưới dạng véctơ

${{x}_{1}}A_{1}^{c}+{{x}_{2}}A_{2}^{c}+...+{{x}_{n}}A_{n}^{c}=B.$ Vậy hệ có nghiệm khi và chỉ khi véctơ $B$ biểu diễn tuyến tính qua hệ véctơ cột $\left\{ A_{1}^{c},A_{2}^{c},...,A_{n}^{c} \right\}$ của ma trận $A.$ Hệ có bao nhiêu nghiệm thì có bấy nhiêu cách biểu diễn tuyến tính véctơ $B$ qua hệ véctơ cột của ma trận $A.$

Do mọi định thức con của $A$ đều là định thức con của $\overline{A}$ do đó $0\le r(A)\le r(\overline{A})\le \min \left\{ m,n+1 \right\}.$

>>Xem thêm Hệ phương trình tuyến tính thuần nhất

Điều kiện cần và đủ để hệ phương trình tuyến tính tổng quát có nghiệm

Định lí Kronecker – Capelli

Cho hệ phương trình tuyến tính $n$ ẩn $AX=B.$ Điều kiện cần và đủ để hệ phương trình tuyến tính có nghiệm là $r(A)=r(\overline{A}).$

Chứng minh.

Ta có $r(A)=r\left\{ A_{1}^{c},A_{2}^{c},...,A_{n}^{c} \right\},r(\overline{A})=r\left\{ A_{1}^{c},A_{2}^{c},...,A_{n}^{c},B \right\}.$

Điều kiện cần: Nếu hệ có nghiệm thì véctơ B được biểu diễn tuyến tính qua hệ véctơ $\left\{ A_{1}^{c},A_{2}^{c},...,A_{n}^{c} \right\}.$

Do đó \[r\left\{ A_{1}^{c},A_{2}^{c},...,A_{n}^{c},B \right\}=r\left\{ A_{1}^{c},A_{2}^{c},...,A_{n}^{c} \right\}\Rightarrow r(\overline{A})=r(A).\]

Điều kiện đủ: Nếu $r(A)=r(\overline{A})\Rightarrow r\left\{ A_{1}^{c},A_{2}^{c},...,A_{n}^{c} \right\}=r\left\{ A_{1}^{c},A_{2}^{c},...,A_{n}^{c},B \right\}.$

Ta có điều phải chứng minh.

Khảo sát tổng quát hệ phương trình tuyến tính

Cho hệ phương trình tuyến tính có $n$ ẩn, các ma trận hệ số và ma trận hệ số mở rộng lần lượt là $A,\overline{A}.$ Khi đó:

  • Nếu $r(A)=r(\overline{A})=n$ (số ẩn của hệ) thì hệ có nghiệm duy nhất;
  • Nếu $r(A)=r(\overline{A})=r<n$ (nhỏ hơn số ẩn của hệ) thì hệ có vô số nghiệm phụ thuộc $n-r$ tham số;
  • Nếu $r(A)<r(\overline{A})$ thì hệ vô nghiệm.

    >>Xem thêm Các phương pháp tính định thức của ma trận

    >> Độc lập tuyến tính và phụ thuộc tuyến tính

    >>Định thức của ma trận và các tính chất của định thức

    >> Chứng minh một ma trận suy biến và ma trận khả nghịch

    >>Cơ sở của không gian véctơ

    >> Đạo hàm cấp 1 và đạo hàm cấp 2 của hàm số cho bởi tham số

    >> Khai triển Taylor và ứng dụng

    >> Các dạng toán về hạng của ma trận và phương pháp giải

Ví dụ 1: Giải và biện luận hệ phương trình $\left\{ \begin{gathered} {x_1} + 2{x_2} + 3{x_4} = 7 \hfill \\ 2{x_1} + 5{x_2} + {x_3} + 5{x_4} = 16 \hfill \\ 3{x_1} + 7{x_2} + {x_3} + 8{x_4} = 23 \hfill \\ 5{x_1} + 12{x_2} + 2{x_3} + 13{x_4} = m \hfill \\ 6{x_1} + 14{x_2} + 3{x_3} + 16{x_4} = 46 \hfill \\ \end{gathered} \right..$

Biến đổi ma trận hệ số mở rộng:

$\overline A = \left( {\begin{array}{*{20}{c}} 1&2&0&3&7 \\ 2&5&1&5&{16} \\ 3&7&1&8&{23} \\ 5&{12}&2&{13}&m \\ 6&{14}&3&{16}&{46} \end{array}} \right)\xrightarrow{\begin{gathered} {\mathbf{ - 2}}{{\mathbf{d}}_{\mathbf{1}}}{\mathbf{ + }}{{\mathbf{d}}_{\mathbf{2}}} \hfill \\ {\mathbf{ - 3}}{{\mathbf{d}}_{\mathbf{1}}}{\mathbf{ + }}{{\mathbf{d}}_{\mathbf{3}}} \hfill \\ {\mathbf{ - 5}}{{\mathbf{d}}_{\mathbf{1}}}{\mathbf{ + }}{{\mathbf{d}}_{\mathbf{4}}} \hfill \\ {\mathbf{ - 6}}{{\mathbf{d}}_{\mathbf{1}}}{\mathbf{ + }}{{\mathbf{d}}_{\mathbf{5}}} \hfill \\ \end{gathered} }\left( {\begin{array}{*{20}{c}} 1&2&0&3&7 \\ 0&1&1&{ - 1}&2 \\ 0&1&1&{ - 1}&2 \\ 0&2&2&{ - 2}&{m - 35} \\ 0&2&3&{ - 2}&4 \end{array}} \right)\xrightarrow{\begin{subarray}{l} {\mathbf{ - }}{{\mathbf{d}}_{\mathbf{2}}}{\mathbf{ + }}{{\mathbf{d}}_{\mathbf{3}}} \\ {\mathbf{ - 2}}{{\mathbf{d}}_{\mathbf{2}}}{\mathbf{ + }}{{\mathbf{d}}_{\mathbf{4}}} \\ {\mathbf{ - 2}}{{\mathbf{d}}_{\mathbf{2}}}{\mathbf{ + }}{{\mathbf{d}}_{\mathbf{5}}} \end{subarray} }\left( {\begin{array}{*{20}{c}} 1&2&0&3&7 \\ 0&1&1&{ - 1}&2 \\ 0&0&0&0&0 \\ 0&0&0&0&{m - 39} \\ 0&0&1&0&0 \end{array}} \right).$

+ Nếu $m-39=0\Leftrightarrow m=39\Rightarrow r(A)=r(\overline{A})=2<4$ hệ có vô số nghiệm và hệ khi đó tương đương với $\left\{ \begin{gathered} {x_1} + 2{x_2} + 3{x_4} = 7 \hfill \\ {x_2} + {x_3} - {x_4} = 2 \hfill \\ \end{gathered} \right. \Leftrightarrow \left\{ \begin{gathered} {x_1} = 2{x_3} - 5{x_4} + 3 \hfill \\ {x_2} = - {x_3} + {x_4} + 2 \hfill \\ \end{gathered} \right..$ Nghiệm của hệ là $\left( 2{{x}_{3}}-5{{x}_{4}}+3;-{{x}_{3}}+{{x}_{4}}+2;{{x}_{3}};{{x}_{4}} \right),\left( {{x}_{3}},{{x}_{4}}\in \mathbb{R} \right).$

+ Nếu \[m-39\ne 0\Leftrightarrow m\ne 39\Rightarrow r(A)=2<r(\overline{A})=3\] hệ vô nghiệm.

Ví dụ 2: Giải và biện luận hệ phương trình $\left\{ \begin{gathered} 2{x_1} - 2{x_2} + {x_3} - {x_4} + {x_5} = 1 \hfill \\ {x_1} + 2{x_2} - {x_3} + {x_4} - 2{x_5} = 1 \hfill \\ 4{x_1} - 10{x_2} + 5{x_3} - 5{x_4} + 7{x_5} = 1 \hfill \\ 2{x_1} - 14{x_2} + 7{x_3} - 7{x_4} + 11{x_5} = m \hfill \\ \end{gathered} \right..$

Biến đổi ma trận hệ số mở rộng:

$\begin{gathered} \overline A = \left( {\begin{array}{*{20}{c}} 2&{ - 2}&1&{ - 1}&1&1 \\ 1&2&{ - 1}&1&{ - 2}&1 \\ 4&{ - 10}&5&{ - 5}&7&1 \\ 2&{ - 14}&7&{ - 7}&{11}&m \end{array}} \right)\xrightarrow{{{\mathbf{doi\_cho\_}}{{\mathbf{d}}_{\mathbf{1}}}{\mathbf{\& }}{{\mathbf{d}}_{\mathbf{2}}}}}\left( {\begin{array}{*{20}{c}} 1&2&{ - 1}&1&{ - 2}&1 \\ 2&{ - 2}&1&{ - 1}&1&1 \\ 4&{ - 10}&5&{ - 5}&7&1 \\ 2&{ - 14}&7&{ - 7}&{11}&m \end{array}} \right) \hfill \\ \xrightarrow{\begin{subarray}{l} {\mathbf{ - 2}}{{\mathbf{d}}_{\mathbf{1}}}{\mathbf{ + }}{{\mathbf{d}}_{\mathbf{2}}} \\ {\mathbf{ - 4}}{{\mathbf{d}}_{\mathbf{1}}}{\mathbf{ + }}{{\mathbf{d}}_{\mathbf{3}}} \\ {\mathbf{ - 2}}{{\mathbf{d}}_{\mathbf{1}}}{\mathbf{ + }}{{\mathbf{d}}_{\mathbf{4}}} \end{subarray} }\left( {\begin{array}{*{20}{c}} 1&2&{ - 1}&1&{ - 2}&1 \\ 0&{ - 6}&3&{ - 3}&5&{ - 1} \\ 0&{ - 18}&9&{ - 9}&{15}&{ - 3} \\ 0&{ - 18}&9&{ - 9}&{15}&{m - 2} \end{array}} \right)\xrightarrow{\begin{subarray}{l} {\mathbf{ - 3}}{{\mathbf{d}}_{\mathbf{2}}}{\mathbf{ + }}{{\mathbf{d}}_{\mathbf{3}}} \\ {\mathbf{ - 3}}{{\mathbf{d}}_{\mathbf{2}}}{\mathbf{ + }}{{\mathbf{d}}_{\mathbf{4}}} \end{subarray} }\left( {\begin{array}{*{20}{c}} 1&2&{ - 1}&1&{ - 2}&1 \\ 0&{ - 6}&3&{ - 3}&5&{ - 1} \\ 0&0&0&0&0&0 \\ 0&0&0&0&0&{m + 1} \end{array}} \right). \hfill \\ \end{gathered} $

+ Nếu $m+1\ne 0\Leftrightarrow m\ne -1\Rightarrow r(A)=2<r(\overline{A})=3$ hệ vô nghiệm.

+ Nếu \[m+1=0\Leftrightarrow m=-1\Rightarrow r(A)=r(\overline{A})=2\] hệ vô số nghiệm và khi đó hệ tương đương với $\left\{ \begin{gathered} {x_1} + 2{x_2} - {x_3} + {x_4} - 2{x_5} = 1 \hfill \\ - 6{x_2} + 3{x_3} - 3{x_4} + 5{x_5} = - 1 \hfill \\ \end{gathered} \right. \Leftrightarrow \left\{ \begin{gathered} {x_1} = \frac{2}{3} - 2{x_4} + \frac{1}{3}{x_5} \hfill \\ {x_2} = \frac{1}{6} + \frac{1}{2}{x_3} - \frac{1}{2}{x_4} + \frac{5}{6}{x_5} \hfill \\ \end{gathered} \right..$

Nghiệm của hệ là $\left( {{x}_{1}}=\frac{2}{3}-2{{x}_{4}}+\frac{1}{3}{{x}_{5}};\frac{1}{6}+\frac{1}{2}{{x}_{3}}-\frac{1}{2}{{x}_{4}}+\frac{5}{6}{{x}_{5}};{{x}_{3}};{{x}_{4}};{{x}_{5}} \right),\left( {{x}_{3}},{{x}_{4}},{{x}_{5}}\in \mathbb{R} \right).$

Ví dụ 3: Cho hệ phương trình $\left\{ \begin{array}{l} (2 - a){x_1} + {x_2} + {x_3} = 0\\ {x_1} + (2 - a){x_2} + {x_3} = 0\\ {x_1} + {x_2} + (2 - a){x_3} = 0 \end{array} \right..$

a) Tìm $a$ để hệ phương trình có nghiệm duy nhất;

b) Tìm $a$ để hệ phương trình có vô số nghiệm phụ thuộc một tham số;

c) Tìm $a$ để hệ phương trình có vô số nghiệm phụ thuộc hai tham số.

Biến đổi ma trận hệ số mở rộng:

$\begin{gathered} \overline A = \left( {\begin{array}{*{20}{c}} {2 - a}&1&1&0 \\ 1&{2 - a}&1&0 \\ 1&1&{2 - a}&0 \end{array}} \right)\xrightarrow{{{\mathbf{doi\_cho\_}}{{\mathbf{d}}_{\mathbf{1}}}{\mathbf{\& }}{{\mathbf{d}}_{\mathbf{3}}}}}\left( {\begin{array}{*{20}{c}} 1&1&{2 - a}&0 \\ 1&{2 - a}&1&0 \\ {2 - a}&1&1&0 \end{array}} \right) \hfill \\ \xrightarrow{\begin{subarray}{l} {\mathbf{ - }}{{\mathbf{d}}_{\mathbf{1}}}{\mathbf{ + }}{{\mathbf{d}}_{\mathbf{2}}} \\ {\mathbf{(a - 2)}}{{\mathbf{d}}_{\mathbf{1}}}{\mathbf{ + }}{{\mathbf{d}}_{\mathbf{3}}} \end{subarray} }\left( {\begin{array}{*{20}{c}} 1&1&{2 - a}&0 \\ 0&{1 - a}&{a - 1}&0 \\ 0&{a - 1}&{(1 - a)(a - 3)}&0 \end{array}} \right)\xrightarrow{{{{\mathbf{d}}_{\mathbf{2}}}{\mathbf{ + }}{{\mathbf{d}}_{\mathbf{3}}}}}\left( {\begin{array}{*{20}{c}} 1&1&{2 - a}&0 \\ 0&{1 - a}&{a - 1}&0 \\ 0&0&{(1 - a)(a - 4)}&0 \end{array}} \right). \hfill \\ \end{gathered} $

a) Hệ có nghiệm duy nhất $ \Leftrightarrow r(A) = r(\overline A ) = 3 \Leftrightarrow \left\{ \begin{gathered} 1 - a \ne 0 \hfill \\ (1 - a)(4 - a) \ne 0 \hfill \\ \end{gathered} \right. \Leftrightarrow \left\{ \begin{gathered} a \ne 1 \hfill \\ a \ne 4 \hfill \\ \end{gathered} \right..$

b) Hệ có vô số nghiệm phụ thuộc một tham số $\Leftrightarrow r(A)=r(\overline{A})=2\Leftrightarrow a=4.$

c) Hệ có vô số nghiệm phụ thuộc hai tham số $\Leftrightarrow r(A)=r(\overline{A})=1\Leftrightarrow a=1.$

Ví dụ 4: Cho hệ phương trình $\left\{ \begin{array}{l} kx + y + z = 1\\ x + ky + z = k\\ x + y + kz = {k^2} \end{array} \right..$

a) Tìm $k$ để hệ phương trình có nghiệm duy nhất;

b) Tìm $k$ để hệ phương trình vô nghiệm;

c) Tìm $k$ để hệ phương trình vô số nghiệm phụ thuộc hai tham số.

Biến đổi ma trận hệ số mở rộng:

$\begin{gathered} \overline A = \left( {\begin{array}{*{20}{c}} k&1&1&1 \\ 1&k&1&k \\ 1&1&k&{{k^2}} \end{array}} \right)\xrightarrow{{{\mathbf{doi\_cho\_}}{{\mathbf{d}}_{\mathbf{1}}}{\mathbf{\& }}{{\mathbf{d}}_{\mathbf{3}}}}}\left( {\begin{array}{*{20}{c}} 1&1&k&{{k^2}} \\ 1&k&1&k \\ k&1&1&1 \end{array}} \right) \hfill \\ \xrightarrow{\begin{subarray}{l} {\mathbf{ - }}{{\mathbf{d}}_{\mathbf{1}}}{\mathbf{ + }}{{\mathbf{d}}_{\mathbf{2}}} \\ {\mathbf{ - k}}{{\mathbf{d}}_{\mathbf{1}}}{\mathbf{ + }}{{\mathbf{d}}_{\mathbf{3}}} \end{subarray} }\left( {\begin{array}{*{20}{c}} 1&1&k&{{k^2}} \\ 0&{k - 1}&{1 - k}&{k - {k^2}} \\ 0&{1 - k}&{1 - {k^2}}&{1 - {k^3}} \end{array}} \right) \hfill \\ \xrightarrow{{{{\mathbf{d}}_{\mathbf{2}}}{\mathbf{ + }}{{\mathbf{d}}_{\mathbf{3}}}}}\left( {\begin{array}{*{20}{c}} 1&1&k&{{k^2}} \\ 0&{k - 1}&{1 - k}&{k - {k^2}} \\ 0&0&{(1 - k)(2 + k)}&{(1 - k){{(k + 1)}^2}} \end{array}} \right). \hfill \\ \end{gathered} $

Hệ có nghiệm duy nhất $ \Leftrightarrow r(A) = r(\overline A ) = 3 \Leftrightarrow \left\{ \begin{gathered} k - 1 \ne 0 \hfill \\ (1 - k)(2 + k) \ne 0 \hfill \\ \end{gathered} \right. \Leftrightarrow \left\{ \begin{gathered} k \ne 1 \hfill \\ k \ne - 2 \hfill \\ \end{gathered} \right..$

Hệ vô nghiệm $\Leftrightarrow r(A)<r(\overline{A})\Leftrightarrow k=-2.$

Hệ vô số nghiệm phụ thuộc hai tham số $ \Leftrightarrow r(A) = r(\overline A ) = 1 \Leftrightarrow \left\{ \begin{gathered} k - 1 = 0 \hfill \\ (1 - k)(2 + k) = 0 \hfill \\ (1 - k){(k + 1)^2} = 0 \hfill \\ \end{gathered} \right. \Leftrightarrow k = 1.$

Ví dụ 5: Giải và biện luận hệ phương trình $\left\{ \begin{gathered} x + 2y + mz = a \hfill \\ 2x - 7y + \left( {m - 1} \right)z = 1 \hfill \\ - 4x + y - mz = b \hfill \\ \end{gathered} \right.$ theo các tham số $a,b$ và $m.$

Giải. Biến đổi sơ cấp cho ma trận hệ số mở rộng

$\overline A = \left( {\begin{array}{*{20}{c}} 1&2&m&a \\ 2&{ - 7}&{m - 1}&1 \\ { - 4}&1&{ - m}&b \end{array}} \right)\xrightarrow{\begin{subarray}{l} {\mathbf{ - 2}}{{\mathbf{d}}_{\mathbf{1}}}{\mathbf{ + }}{{\mathbf{d}}_{\mathbf{2}}} \\ {\mathbf{4}}{{\mathbf{d}}_{\mathbf{1}}}{\mathbf{ + }}{{\mathbf{d}}_{\mathbf{3}}} \end{subarray} }\left( {\begin{array}{*{20}{c}} 1&2&m&a \\ 0&{ - 11}&{ - m - 1}&{ - 2a + 1} \\ 0&9&{3m}&{4a + b} \end{array}} \right)$

$\xrightarrow{{\dfrac{{\mathbf{9}}}{{{\mathbf{11}}}}{{\mathbf{d}}_{\mathbf{2}}}{\mathbf{ + }}{{\mathbf{d}}_{\mathbf{3}}}}}\left( {\begin{array}{*{20}{c}} 1&2&m&a \\ 0&{ - 11}&{ - m - 1}&{ - 2a + 1} \\ 0&0&{\dfrac{3}{{11}}\left( {8m - 3} \right)}&{\dfrac{1}{{11}}\left( {26a + 11b + 9} \right)} \end{array}} \right)$

+ Nếu $m\ne \dfrac{3}{8}\Rightarrow r\left( A \right)=r\left( \overline{A} \right)=3$ nên hệ có nghiệm duy nhất xác định bởi

$x=\dfrac{-6am-9bm-a+2b-3m}{3\left( 8m-3 \right)};y=\dfrac{2am-bm-4a-b-3m}{3\left( 8m-3 \right)};z=\dfrac{36a+11b+9}{3\left( 8m-3 \right)}$

+ Nếu $m=\dfrac{3}{8}$ và $26a+11b+9\ne 0\Rightarrow r\left( A \right)=2<r\left( \overline{A} \right)=3$ nên hệ vô nghiệm.

+ Nếu $m=\dfrac{3}{8}$ và $26a+11b+9=0\Rightarrow r\left( A \right)=r\left( \overline{A} \right)=2<3$ hệ có vô số nghiệm phụ thuộc một tham số

Cụ thể $\left\{ \begin{gathered} x + 2y + \dfrac{3}{8}z = a \hfill \\ - 11y - \dfrac{{11}}{8}z = - 2a + 1 \hfill \\ \end{gathered} \right. \Leftrightarrow \left\{ \begin{gathered} y = - \dfrac{5}{{11}}a - \dfrac{3}{{11}} + x \hfill \\ z = \dfrac{{56}}{{11}}a + \dfrac{{16}}{{11}} - 8x \hfill \\ \end{gathered} \right.,x \in \mathbb{R}.$

Ví dụ 6: Giải và biện luận hệ phương trình $\left\{ \begin{gathered} x - y + az + t = a \hfill \\ x + ay - z + t = - 1 \hfill \\ ax + ay - z - t = - 1 \hfill \\ x + y + z + t = - a \hfill \\ \end{gathered} \right..$

Biến đổi ma trận hệ số mở rộng:

\[\begin{gathered} \overline A = \left( {\begin{array}{*{20}{c}} 1&{ - 1}&a&1&a \\ 1&a&{ - 1}&1&{ - 1} \\ a&a&{ - 1}&{ - 1}&{ - 1} \\ 1&1&1&1&{ - a} \end{array}} \right)\xrightarrow{\begin{subarray}{l} {\mathbf{ - }}{{\mathbf{d}}_{\mathbf{1}}}{\mathbf{ + }}{{\mathbf{d}}_{\mathbf{2}}} \\ {\mathbf{ - a}}{{\mathbf{d}}_{\mathbf{1}}}{\mathbf{ + }}{{\mathbf{d}}_{\mathbf{3}}} \\ {\mathbf{ - }}{{\mathbf{d}}_{\mathbf{1}}}{\mathbf{ + }}{{\mathbf{d}}_{\mathbf{4}}} \end{subarray} }\left( {\begin{array}{*{20}{c}} 1&{ - 1}&a&1&a \\ 0&{a + 1}&{ - a - 1}&0&{ - a - 1} \\ 0&{2a}&{ - {a^2} - 1}&{ - a - 1}&{ - {a^2} - 1} \\ 0&2&{ - a + 1}&0&{ - 2a} \end{array}} \right) \hfill \\ \xrightarrow{{{\mathbf{doi\_cho\_}}{{\mathbf{d}}_{\mathbf{2}}}{\mathbf{\& }}{{\mathbf{d}}_{\mathbf{4}}}}}\left( {\begin{array}{*{20}{c}} 1&{ - 1}&a&1&a \\ 0&2&{ - a + 1}&0&{ - 2a} \\ 0&{2a}&{ - {a^2} - 1}&{ - a - 1}&{ - {a^2} - 1} \\ 0&{a + 1}&{ - a - 1}&0&{ - a - 1} \end{array}} \right) \hfill \\ \xrightarrow{\begin{subarray}{l} {\mathbf{ - a}}{{\mathbf{d}}_{\mathbf{2}}}{\mathbf{ + }}{{\mathbf{d}}_{\mathbf{3}}} \\ {\mathbf{ - (a + 1)}}{{\mathbf{d}}_{\mathbf{2}}}{\mathbf{ + 2}}{{\mathbf{d}}_{\mathbf{4}}} \end{subarray} }\left( {\begin{array}{*{20}{c}} 1&{ - 1}&a&1&a \\ 0&2&{ - a + 1}&0&{ - 2a} \\ 0&0&{ - a - 1}&{ - a - 1}&{{a^2} - 1} \\ 0&0&{{a^2} - 2a - 3}&0&{2{a^2} - 2} \end{array}} \right) \hfill \\ \xrightarrow{{{\mathbf{(}}{{\mathbf{a}}^{\mathbf{2}}}{\mathbf{ - 2a - 3)}}{{\mathbf{d}}_{\mathbf{3}}}{\mathbf{ + (a + 1)}}{{\mathbf{d}}_{\mathbf{4}}}}}\left( {\begin{array}{*{20}{c}} 1&{ - 1}&a&1&a \\ 0&2&{ - a + 1}&0&{ - 2a} \\ 0&0&{ - a - 1}&{ - a - 1}&{{a^2} - 1} \\ 0&0&0&{(3 - a){{(a + 1)}^2}}&{{{({a^2} - 1)}^2}} \end{array}} \right). \hfill \\ \end{gathered} \]

+ Nếu $a=-1\Rightarrow r(A)=r(\overline{A})=2<4$ hệ vô số nghiệm và hệ khi đó tương đương với \[\left\{ \begin{gathered} x - y + az + t = a \hfill \\ 2y + (1 - a)z = - 2a \hfill \\ \end{gathered} \right. \Leftrightarrow \left\{ \begin{gathered} x = \frac{{3a - 1}}{2}z - t \hfill \\ y = - a + \frac{{a - 1}}{2}z \hfill \\ \end{gathered} \right..\]

+ Nếu $a=3\Rightarrow r(A)=3<r(\overline{A})=4$ hệ vô nghiệm.

+ Nếu $a\notin \left\{ -1,3 \right\}\Rightarrow r(A)=r(\overline{A})=4$ hệ có nghiệm duy nhất và khi đó hệ tương đương với

\[\left\{ \begin{gathered} x - y + az + t = a \hfill \\ 2y + (1 - a)z = - 2a \hfill \\ - (a + 1)z - (a + 1)t = {a^2} - 1 \hfill \\ (3 - a){(a + 1)^2}t = {({a^2} - 1)^2} \hfill \\ \end{gathered} \right. \Leftrightarrow \left\{ \begin{gathered} x = \frac{{2a - 2}}{{3 - a}} \hfill \\ y = - \frac{{a + 1}}{{3 - a}} \hfill \\ z = \frac{{2 - 2a}}{{3 - a}} \hfill \\ t = \frac{{{{(a - 1)}^2}}}{{3 - a}} \hfill \\ \end{gathered} \right..\]

Từ khóa » đặc điểm Của Hpt