Hệ Thống Kiến Thức Hình Oxyz
Có thể bạn quan tâm
Nâng cấp gói Pro để trải nghiệm website VnDoc.com KHÔNG quảng cáo, và tải file cực nhanh không chờ đợi.
Tìm hiểu thêm » Mua ngay Từ 79.000đ Hỗ trợ ZaloHệ thống kiến thức hình Oxyz
Hệ thống kiến thức hình Oxyz được VnDoc.com sưu tầm và đăng tải xin gửi tới bạn đọc cùng tham khảo. Mời các bạn cùng theo dõi bài viết dưới đây nhé.
HOT: Đáp án Toán THPT Quốc gia 2023
1. Tọa độ điểm và véctơ
Hệ toa độ trong không gian gồm ba trục
\(Ox,Oy,Oz\) đôi một vuông góc, các véc tơ đơn vị tương ứng trên ba trục lần lượt là:
\(\overrightarrow{i} = (1;0;0),\overrightarrow{j} = (0;1;0),\overrightarrow{k} = (0;0;1)\)
\(\overrightarrow{u}(x;y;z) \Leftrightarrow \overrightarrow{u} = x\overrightarrow{i} + y\overrightarrow{j} + z\overrightarrow{k}\).
\(\overrightarrow{u} = (x;y;z) \Rightarrow |\overrightarrow{u}| = \sqrt{x^{2} + y^{2} + z^{2}}\)
\(\overrightarrow{AB} = \left( x_{B} - x_{A};y_{B} - y_{A};z_{B} - z_{A} \right)\)
\(AB = BA = |\overrightarrow{AB}| = \sqrt{\left( x_{B} - x_{A} \right)^{2} + \left( y_{B} - y_{A} \right)^{2} + \left( z_{B} - z_{A} \right)^{2}}\).
Nếu I là trung điểm của AB thì
\(I\left( \frac{x_{A} + x_{B}}{2};\frac{y_{A} + y_{B}}{2};\frac{z_{A} + z_{B}}{2} \right)\)
Nếu G là trọng tâm của
\(\bigtriangleup ABC\) thì
\(G\left( \frac{x_{A} + x_{B} + x_{C}}{3};\frac{y_{A} + y_{B} + y_{C}}{3};\frac{z_{A} + z_{B} + z_{C}}{3} \right)\)
ABCD là hình bình hành
\(\Leftrightarrow \overrightarrow{AB} = \overrightarrow{DC}\).
2. Tích vô hướng hai vectơ và ứng dụng
a) Tích vô hướng: Cho
\(\overrightarrow{u}\left( x_{1};y_{1};z_{1} \right)\&\overrightarrow{v}\left( x_{2};y_{2};z_{2} \right)\). Ta có:
\(\overrightarrow{u} \cdot \overrightarrow{v} = |\overrightarrow{u}| \cdot |\overrightarrow{v}| \cdot cos(\overrightarrow{u},\overrightarrow{v})\)
\(\overrightarrow{u} \cdot \overrightarrow{V} = x_{1}x_{2} + y_{1}y_{2} + z_{1}z_{2}\).
\(\overrightarrow{u}\bot\overrightarrow{v} \Leftrightarrow \overrightarrow{u} \cdot \overrightarrow{v} = 0 \Leftrightarrow x_{1} \cdot x_{2} + y_{1} \cdot y_{2} + z_{1} \cdot z_{2} = 0\)
b) Tích hữu hướng: Cho hai vectơ
\(\overrightarrow{u}\left( x_{1};y_{1};z_{1} \right)\) và
\(\overrightarrow{v}\left( x_{2};y_{2};z_{2} \right)\). Ta có:
\(|\lbrack\overrightarrow{u},\overrightarrow{V}\rbrack| = |\overrightarrow{u}| \cdot |\overrightarrow{V}| \cdot \sin(\overrightarrow{u},\overrightarrow{V})\).
\(\lbrack\overrightarrow{u},\overrightarrow{V}\rbrack = \left( \left| \begin{matrix} y_{1} & z_{1} \\ y_{2} & z_{2} \\ \end{matrix} \right|;\left| \begin{matrix} z_{1} & x_{1} \\ z_{2} & x_{2} \\ \end{matrix} \right|;\left| \begin{matrix} x_{1} & y_{1} \\ x_{2} & y_{2} \\ \end{matrix} \right| \right)\).
\(\overrightarrow{u}\&\overrightarrow{V}\) cùng phương
\(\Leftrightarrow \lbrack\overrightarrow{u},\overrightarrow{V}\rbrack = \overrightarrow{0} \Leftrightarrow \frac{x_{2}}{x_{1}} = \frac{y_{2}}{y_{1}} = \frac{z_{2}}{z_{1}}\)
Diện tích tam giác:
\(S_{ABC} = \frac{1}{2}|\lbrack\overrightarrow{AB},\overrightarrow{AC}\rbrack|\)
Diện tích hình bình hành:
\(S_{ABCD} = \{\lbrack\overrightarrow{AB},\overrightarrow{AD}\rbrack\)
c) Tích hỗn hợp (hỗn tạp):
\(\overrightarrow{u},\overrightarrow{v},\overrightarrow{w}\) đồng phẳng
\(\Leftrightarrow \lbrack\overrightarrow{u},\overrightarrow{V}\rbrack \cdot \overrightarrow{W} = 0\)
A, B, C, D là bốn đỉnh của tứ diện
\(\Leftrightarrow \overrightarrow {AB} ;\overrightarrow {AC} ;\overrightarrow {AD}\) không đồng phẳng.
Thể tích khối hộp
\(M'_0\) và có VTCP
\(\overrightarrow u '\) ta có:
(d) và (d') đồng phẳng khi và chỉ khi
\(\left[ {\overrightarrow u ;\overrightarrow {u'} } \right].\overrightarrow {{M_0}{M_0}'} = 0\)
(d) và (d') chéo nhau khi và chỉ khi
\(\left[ {\overrightarrow u ;\overrightarrow {u'} } \right].\overrightarrow {{M_0}{M_0}'} \ne 0\)
(d) và (d') cắt nhau khi và chỉ khi
Từ khóa » Công Thức Hình Học Không Gian Lớp 12
-
Tài Liệu - Công Thức Hình Học Không Gian Lớp 12 | 7scv
-
Tổng Hợp Công Thức Toán Hình 12 Đầy Đủ Dễ Nhớ Nhất
-
Tổng Hợp Cong Thuc Toan 12 Hinh Hoc Khong Gian - Banmaynuocnong
-
Hệ Thống Các Công Thức Hình Học 12 Từ Căn Bản Tới Nâng Cao
-
Tải Ngay Bộ 50 Công Thức Hình Học Không Gian Giải Nhanh Trắc ...
-
Công Thức Hình Học 12 Thể Tích Khối Đa Diện Dễ Nhớ - Kiến Guru
-
Trọn Bộ Công Thức Hình Học Không Gian 12 - Sigma Books
-
Các Công Thức Hình Học 12 Từ Căn Bản Tới Nâng Cao
-
Tổng Hợp Công Thức Hình Học Toán 12 Đầy Đủ Và Chi Tiết Nhất
-
Top 9 Công Thức Toán Hình Học Không Gian Lớp 12
-
CÔNG THỨC HÌNH HỌC KHÔNG GIAN 12 ĐẦY ĐỦ - 123doc
-
Tổng Hợp Các Công Thức Toán 12 Hình Học Không Gian
-
✓ Công Thức Toán 12 Trọn Bộ Công Thức Hình ...