Hệ Thức Lượng Trong Tam Giác Vuông: Lý Thuyết & Bài Luyện Tập (Có ...
Có thể bạn quan tâm
Một trong những kiến thức toán lớp 9 quan trọng phải kể đến hệ thức lượng trong tam giác vuông. Mảng kiến thức xuyên suốt trong nhiều bài tập khác nhau và liên quan đến các kiến thức sau này, đặc biệt hơn từ hệ thức lượng có rất nhiều dạng bài tập có thể xuất hiện trong các kì thi nên người học phải ghi nhớ thật lâu và thành thạo nhiều dạng bài. Studytienganh sẽ giúp bạn tìm hiểu đầy đủ ngay trong bài viết dưới đây. Cùng tham khảo nha!
1. Lý thuyết đầy đủ
Định lý Pitago
Trong một tam giác vuông, bình phương cạnh huyền bằng tổng các bình phương của hai cạnh góc vuông.
Hệ thức về cạnh và đường cao trong tam giác vuông
Cho ΔABC, vuông góc tại A, AH ⊥ BC, AB = c, AC = b, BC = a, AH = h thì:
+ BH = c' được xem là hình chiếu của AB xuống BC
+ CH = b' được xem là hình chiếu của AC xuống BC
Khi đó, ta có:
- 1) AB2 = BH.BC tức c2 = a.c'
- AC2 = CH.BC tức b2 = a.b'
- 2) AH2 = CH.BH hay h2 = b'.c'
- 3) AB.AC = AH.BC hay b.c = a.h
- 5) AB2 + AC2 = BC2 hay b2 + c2 = a2 (Định lý Pytago)
Tỉ số lượng giác của góc nhọn
a. Định nghĩa
b. Định lí
Nếu hai góc phụ nhau thì sin góc này bằng cosin góc kia, tang góc này bằng cotang góc kia.
c. Một số hệ thức cơ bản
d. So sánh các tỉ số lượng giác
- a) Cho α,β là hai góc nhọn. Nếu α < β thì
- * sinα < sinβ; tanα < tanβ
- * cosα > cosβ; cotα > cotβ
- b) sinα < tanα; cosα < cotα
Hệ thức về góc và cạnh trong tam giác vuông
Trong một tam giác vuông, mỗi cạnh góc vuông bằng:
a) Cạnh huyền nhân với sin góc đối hoặc nhân với cos góc kề
b) Cạnh góc vuông kia nhân với tan góc đối hoặc cot góc kề
- b = a.sinB = a.cosC
- c = a.sinC = a.cosB
- b = c.tanB = c.cotC
- c = b.tanB = b.cotC
Pitago là nhà toán học thiên tài của nhân loại
2. Bài tập luyện tập có lời giải
Bài 1: Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 5; AC = 7, BH = x, CH = y. Chỉ ra một hệ thức sai:
A. 52 = x2(x + y)2 B. 52 = x(x + y)
C. 72 = y(x + y) D. 52 + 72 = (x + y)2
Bài 2: Cho tam giác ABC vuông tại A, đường cao AH. Biết AC = 14, BC = 16, BH = x, CH = y. Chỉ ra một hệ thức sai:
A. 142 = y.16 B. 16 = x + y
C. xy = 16 D. A và B đúng
Bài 3: Cho tam giác MNP vuông tại M, đường cao MK. Biết MN = x, MP = y, NK = 2, PK = 6. Chỉ ra một hệ thức sai:
A. 82 = x2 + y2 B. x2 = 2.8
C. 6.8 = y2 D. x.y = 2.6
Bài 4: Cho tam giác PQR vuông tại P, đường cao PS. Biết PS = 3, SQ = 2, SR = x, PR = y. Chỉ ra một hệ thức sai:
A. 3x = 2y B. y2 = x(x + 2)
C. x2 + 32 = y2 D. 32 = 2x
Bài 5: Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = x, AC = y, AH = 2, BC = 5. Cạnh nhỏ nhất của tam giác này có độ dài là:
Bài 6: Cho tam giác ABC vuông tại A. Biết AB = 6, tanB = 5/12 Độ dài AC là:
A.2 B. 5√2 C.5 D.2,5
Bài 7: Cho cosα = 0,8. Tính sin α ( biết α là góc nhọn)
A. sinα = 0,6 B. sinα = ±0,6
C. sinα = 0,4 D. Kết quả khác
Bài 8: Tìm một hệ thức sai:
A.sin 250 = sin 700 B. tan 650.cot650 = 1
C.sin 300 = cos600 D.sin 750 = cos 750
Bài 9: Cho các biểu thức sau, biểu thức nào âm:
A. sin2 x + cos2 x B. sinx – 1
C. cosx + 1 D. sin 300
Bài 10: Cho tam giác ABC. Biết AB = 21, AC = 28, BC = 35. Tam giác ABC là tam giác gì?
A. Δ cân tại A B. Δ vuông ở A
C. Δ thường D. Cả 3 đều sai.
Bài 11: Cho ΔABC đều, đường cao AH. Biết HC = 3, độ dài AC và AH là:
A. AC = 3√3; AH = 4 B. AC = 6√3 ; AH = 6
C. AC = 6; AH = 3√3 D. Cả 3 đều sai
Bài 12: Cho tam giác ABC có góc B bằng 450, góc C bằng 300. Nếu AC = 8 thì AB bằng:
A. 4 B. 4√2 C. 4√3 D. 4√6
Đáp án và hướng dẫn giải
1. A | 2. C | 3. D | 4. A | 5. C |
6. A | 7. A | 8. A | 9. B | 10. B |
11. C | 12. B |
Bài 5:
Ta có: x2 + y2 = 52 = 25 và xy = 5.2 = 10 (*)
⇒ (x + y)2 = 45 ⇒ x + y = 3√5 ⇒ x = 3√5 - y
Thay vào (*) ta được:
(3√5 - y)y = 10 ⇔ y = √5; y = 2√5
⇒ x = 2√5; x = √5
Vậy cạnh nhỏ nhất của tam giác là √5.
Bài 7:
sin2 α + cos2 α = 1 ⇒ sin2 α = 1 - 0,82 = 0,36
⇒ sinα = 0,6
Bài 12:
Kẻ đường cao AH của tam giác ABC
Xét tam giác AHC vuông tại H, góc ACH bằng 300 có:
AH = AC.sin300 = 4 (cm)
Xét tam giác AHB vuông tại H, góc ABH bằng 450 có:
Hệ thức lượng trong tam giác vuông là phần kiến thức quan trọng bạn phải nắm vững. Sẽ không còn là vấn đề khó khăn nếu bạn chăm chỉ luyện tập đến khi thành thạo các dạng bài trên. Đội ngũ studytienganh chúc bạn sớm chinh phục những đỉnh cao tri thức và thành công trong tương lai.
HỌC TIẾNG ANH QUA 5000 PHIM SONG NGỮ
Khám phá ngay !- 3 Trang Web Luyện Nghe Tiếng Anh hiệu quả tại nhà ai cũng nên biết !
- Storm Out là gì và cấu trúc cụm từ Storm Out trong câu Tiếng Anh
- Xi Măng trong Tiếng Anh là gì: Định Nghĩa, Ví Dụ Anh Việt
- Rate Card là gì và cấu trúc cụm từ Rate Card trong câu Tiếng Anh
- Hoá Đơn trong Tiếng Anh là gì: Định Nghĩa, Ví Dụ Anh Việt
- Tổng hợp những ebook tiếng anh hay nhất hiện nay
- Tổng Hợp Từ Vựng Tiếng Anh về Buôn Bán
- Adhere To là gì và cấu trúc cụm từ Adhere To trong câu Tiếng Anh
- Cấu trúc viết lại câu trong tiếng Anh thường gặp nhất
Từ khóa » Hệ Thức Lượng Giác Trong Tam Giác
-
Lý Thuyết Các Hệ Thức Lượng Trong Tam Giác Và Giải Tam Giác
-
Hệ Thức Lượng Trong Tam Giác: Vuông, Cân, Thường Chính Xác 100%
-
Hệ Thức Lượng Trong Tam Giác Vuông, Cân, Thường Lớp 8, 9, Lớp ...
-
Hệ Thức Lượng Trong Tam Giác - Chuyên đề Hình Học 10
-
Các Hệ Thức Lượng Trong Tam Giác Thường, Và Tam Giác Vuông.
-
Công Thức Lượng Giác Trong Tam Giác Nâng Cao - MathVn.Com
-
Hệ Thức Lượng Trong Tam Giác
-
Lý Thuyết Các Hệ Thức Lượng Trong Tam Giác Và Giải Tam Giác
-
Hệ Thức Lượng Giác Trong Tam Giác Vuông , Thường Có Công Thức Lớp ...
-
35 Bài Tập Hệ Thức Lượng Trong Tam Giác Có Hướng Dẫn
-
Các Hệ Thức Lượng Trong Tam Giác
-
Các Hệ Thức Lượng Trong Tam Giác - Thắp đuốc
-
Nhận Dạng Tam Giác. Một Số Hệ Thức Lượng Giác Trong Tam Giác