Hình Học 10 Bài 2: Tích Vô Hướng Của Hai Vectơ - Hoc247

YOMEDIA NONE Trang chủ Toán 10 Chương 2: Tích Vô Hướng Của Hai Vectơ Và Ứng Dụng Hình học 10 Bài 2: Tích vô hướng của hai vectơ ADMICRO Lý thuyết10 Trắc nghiệm34 BT SGK 119 FAQ

Bài trước chúng ta đã nhắc đến giá trị lượng giác của một góc bất kì từ 0 đến 180 độ, hôm nay chúng ta sẽ được biết đến khái niệm Tích vô hướng của hai vectơ, liệu sẽ bằng 1 vectơ khác hay một giá trị đại số?

ATNETWORK YOMEDIA

1. Tóm tắt lý thuyết

1.1. Góc giữa hai vectơ

1.2. Định nghĩa tích vô hướng của hai vectơ

1.3. Tính chất của tích vô hướng

1.4. Biểu thức tọa độ của tích vô hướng

2. Bài tập minh hoạ

3. Luyện tập bài 2 chương 2 hình học 10

3.1 Trắc nghiệm về Tích vô hướng của hai vectơ

3.2 Bài tập SGK và Nâng Cao về Tích vô hướng của hai vectơ

4. Hỏi đáp về bài 2 chương 2 hình học 10

Tóm tắt lý thuyết

1.1. Góc giữa hai vectơ

Cho hai vectơ \(\vec a\) và \(\vec b\) được mô tả như hình sau:

gocgiuahaivecto

Số đo góc trên được gọi là số đo của góc giữa hai vectơ \(\vec a\) và \(\vec b\).

Nếu số đo ấy bằng 90 độ, ta nói \(\vec a\) vuông góc với \(\vec b\).

1.2. Định nghĩa tích vô hướng của hai vectơ

Tích vô hướng của hai vectơ \(\vec a\) và \(\vec b\) là một số (đại lượng đại số), được kí hiệu là \(\vec a.\vec b\) và được xác định bởi công thức

\(\vec a.\vec b=|\vec a|.|\vec b|.cos\left ( \vec a,\vec b \right )\)

Bình phương vô hướng:

Với mỗi vectơ \(\vec a\) tùy ý, tích vô hướng \(\vec a.\vec a\) được kí hiệu là \(|\vec a|^2\) được gọi là bình phương vô hướng

Ta có: \(\vec a^2=|\vec a|.|\vec a|.cos0^o=|\vec a|^2\)

Như vậy: Bình phương vô hướng của một vectơ bằng bình phương độ dài của vectơ đó

1.3. Tính chất của tích vô hướng

a) Định lí

Với ba vectơ \(\vec a,\vec b,\vec c\) tùy ý và một số thực k, ta có:

\(\vec a.\vec b=\vec b.\vec a\) (tính chất giao hoán)

\(\vec a.\vec b=0\Leftrightarrow \vec a\perp \vec b\)

\((k\vec a).\vec b=\vec a.(k\vec b)=k.(\vec a.\vec b)\)

\(\vec a. (\vec b\pm \vec c)=\vec a.\vec b\pm \vec a.\vec c\) (tính chất phân phối tổng hiệu)

b) Phương tích của một điểm đối với một đường tròn

phuongtich

Ta dễ dàng chứng minh được \(MT^2=MA.MB\) thông qua việc chứng minh tam giác đồng dạng

Mặc khác theo định lý Pytago vào tam giác OMT vuông tại T (vì MT là tiếp tuyến)

Ta có: \(MT^2=OM^2-OT^2\)

Theo ý trên: \(MA.MB=\vec{MA}.\vec{MB}\) (vì M, A, B thẳng hàng)

Vậy: \(\vec{MA}.\vec{MB}=OM^2-OT^2\)

Đây chính là phương tích của điểm M đối với đường tròn (O).

1.4. Biểu thức tọa độ của tích vô hướng

Cho hai vectơ \(\vec{a}(x;y);\vec{b}(x';y')\). Khi đó:

  • \(\vec{a}.\vec{b}=xx'+yy'\)
  • \(|\vec{a}|=\sqrt{x^2+y^2}\)
  • \(cos(\vec{a};\vec{b})=\frac{xx'+yy'}{\sqrt{x^2+y^2}.\sqrt{x'^2+y'^2}},\vec{a}\neq \vec{0};\vec{b}\neq \vec{0}\)
  • \(\vec{a}\perp \vec{b}\Leftrightarrow xx'+yy'=0\)

Bài tập minh họa

Bài 1:

Tính tích vô hướng của \(\vec{a}(2;3)\) và \(\vec{b}(1;1)\) biết chúng tạo với nhau một góc \(30^o\)

Hướng dẫn:

Áp dụng công thức tính tích vô hướng của hai vectơ, ta có: \(\vec{a}.\vec{b}=|\vec{a}|.|\vec{b}|.cos30\)

\(=\sqrt{2^2+3^2}.\sqrt{1^2+1^2}.\frac{\sqrt{3}}{2}=\frac{\sqrt{78}}{2}\)

Bài 2:

Cho hình vuông ABCD cạnh a đường chéo BD. Tính các tích vô hướng sau: \(\vec{AD}.\vec{AB}\), \(\vec{AD}.\vec{BD}\) và \(\vec{AB}.\vec{CD}\)

Hướng dẫn:

Vì \(AD\perp AB\) nên \(\vec{AD}.\vec{AB}=0\)

\(\vec{AD}.\vec{BD}=|\vec{AD}|.|\vec{BD}|cosADB=a.a\sqrt{2}.cos45=a^2\)

\(\vec{AB}.\vec{CD}=|\vec{AB}|.|\vec{CD}|.cos0^o=a^2\)

Bài 3:

Tính giá trị của biểu thức \(A=\frac{11tan\alpha-5cot\alpha}{34tan\alpha+2cot\alpha}\) biết \(sin\alpha=\frac{1}{4}\)

Hướng dẫn:

Ta có: \(A=\frac{11tan\alpha-5cot\alpha}{34tan\alpha+2cot\alpha}\)\(=\frac{11\frac{sin\alpha}{cos\alpha}-5\frac{cos\alpha}{sin\alpha}}{34\frac{sin\alpha}{cos\alpha}+2\frac{cos\alpha}{sin\alpha}}\)\(=\frac{11sin^2\alpha-5cos^2\alpha}{34sin^2\alpha+2cos^2\alpha}\)

\(=\frac{16sin^2\alpha-5}{36sin^2\alpha+2}\)

\(=\frac{16.(0,25)^2-5}{32.(0,25)^2+2}=-1\)

Bài 4:

Chứng minh biểu thức sau không phụ thuộc vào x:

\(B=2(sin^6x+cos^6x)-3(sin^4x+cos^4x)\)

Hướng dẫn:

Ta có:

\(B=2(sin^6x+cos^6x)-3(sin^4x+cos^4x)\)

\(=2(sin^2x+cos^2x)(sin^4x-sin^2xcos^2x+cos^4x)-3(sin^4x+2sin^2xcos^2x+cos^4x-2sin^2xcos^2x)\)

\(=2(sin^4x+2sin^2xcos^2x+cos^4x-3sin^2xcos^2x)-3(1-2sin^2xcos^2x)\)

\(=2(1-3sin^2xcos^2x)-3(1-2sin^2xcos^2x)\)

\(=-1\)

Vậy biểu thức trên không phụ thuộc vào giá trị của góc x

3. Luyện tập Bài 2 chương 2 hình học 10

Bài trước chúng ta đã nhắc đến giá trị lượng giác của một góc bất kì từ 0 đến 180 độ, hôm nay chúng ta sẽ được biết đến khái niệm Tích vô hướng của hai vectơ, liệu sẽ bằng 1 vectơ khác hay một giá trị đại số?

3.1 Trắc nghiệm về Tích vô hướng của hai vectơ

Để cũng cố bài học xin mời các em cũng làm Bài kiểm tra Trắc nghiệm Hình học 10 Chương 2 Bài 2 để kiểm tra xem mình đã nắm được nội dung bài học hay chưa.

  • Câu 1:

    Cho vectơ \(\vec{a}(4;3)\) và vectơ \(\vec{b}(-3;4)\). Góc hợp bởi 2 vectơ trên là \(90^o\). Tích vô hướng của hai vectơ trên là:

    • A. 0
    • B. \(\frac{25}{2}\)
    • C. \(\frac{25\sqrt{3}}{2}\)
    • D. \(5\sqrt{2}\)
  • Câu 2:

    Cho \(\vec {a}(1;3)\) và \(\vec {b}(-2;4)\). Góc tạo bởi hai vectơ trên là:

    • A. \(30^o\)
    • B. \(45^o\)
    • C. \(60^o\)
    • D. \(75^o\)
  • Câu 3:

    Cho hai vectơ \(\vec{a}=2\vec{i}+\vec{j}\) và \(\vec{b}=k\vec{i}-\vec{j}\)

    Giá trị của k để \(\vec{a}\perp \vec{b}\) là:

    • A. \(k=\frac{1}{3}\)
    • B. \(k=\frac{-1}{3}\)
    • C. \(k=\frac{1}{2}\)
    • D. \(k=\frac{-1}{2}\)

Câu 4-10: Mời các em đăng nhập xem tiếp nội dung và thi thử Online để củng cố kiến thức và nắm vững hơn về bài học này nhé!

3.2 Bài tập SGK và Nâng Cao về Tích vô hướng của hai vectơ

Bên cạnh đó các em có thể xem phần hướng dẫn Giải bài tập Hình học 10 Chương 2 Bài 2 sẽ giúp các em nắm được các phương pháp giải bài tập từ SGK hình học 10 Cơ bản và Nâng cao.

Bài tập 1 trang 45 SGK Hình học 10

Bài tập 2 trang 45 SGK Hình học 10

Bài tập 3 trang 45 SGK Hình học 10

Bài tập 4 trang 45 SGK Hình học 10

Bài tập 5 trang 46 SGK Hình học 10

Bài tập 6 trang 46 SGK Hình học 10

Bài tập 7 trang 46 SGK Hình học 10

Bài tập 2.13 trang 91 SBT Hình học 10

Bài tập 2.14 trang 91 SBT Hình học 10

Bài tập 2.15 trang 91 SBT Hình học 10

Bài tập 2.16 trang 91 SBT Hình học 10

Bài tập 2.17 trang 91 SBT Hình học 10

Bài tập 2.18 trang 92 SBT Hình học 10

Bài tập 2.19 trang 92 SBT Hình học 10

Bài tập 2.20 trang 92 SBT Hình học 10

Bài tập 2.21 trang 92 SBT Hình học 10

Bài tập 2.22 trang 92 SBT Hình học 10

Bài tập 2.23 trang 92 SBT Hình học 10

Bài tập 2.24 trang 92 SBT Hình học 10

Bài tập 2.25 trang 92 SBT Hình học 10

Bài tập 2.26 trang 92 SBT Hình học 10

Bài tập 2.27 trang 92 SBT Hình học 10

Bài tập 2.28 trang 92 SBT Hình học 10

Bài tập 4 trang 51 SGK Hình học 10 NC

Bài tập 5 trang 51 SGK Hình học 10 NC

Bài tập 6 trang 51 SGK Hình học 10 NC

Bài tập 7 trang 52 SGK Hình học 10 NC

Bài tập 8 trang 52 SGK Hình học 10 NC

Bài tập 9 trang 52 SGK Hình học 10 NC

Bài tập 10 trang 52 SGK Hình học 10 NC

Bài tập 11 trang 52 SGK Hình học 10 NC

Bài tập 12 trang 52 SGK Hình học 10 NC

Bài tập 13 trang 52 SGK Hình học 10 NC

Bài tập 14 trang 52 SGK Hình học 10 NC

4. Hỏi đáp về bài 2 chương 2 hình học 10

Nếu có thắc mắc cần giải đáp các em có thể để lại câu hỏi trong phần Hỏi đáp, cộng đồng Toán HỌC247 sẽ sớm trả lời cho các em.

-- Mod Toán Học 10 HỌC247

NONE

Bài học cùng chương

Bài 1: Giá trị lượng giác của một góc bất kỳ từ 0 độ đến 180 độ Hình học 10 Bài 1: Giá trị lượng giác của một góc bất kỳ từ 0 độ đến 180 độ Bài 3: Các hệ thức lượng trong tam giác và giải tam giác Hình học 10 Bài 3: Các hệ thức lượng trong tam giác và giải tam giác Ôn tập chương 2 Tích vô hướng của hai vectơ và ứng dụng Hình học 10 Ôn tập chương 2 Tích vô hướng của hai vectơ và ứng dụng ADSENSE ADMICRO Bộ đề thi nổi bật UREKA AANETWORK

XEM NHANH CHƯƠNG TRÌNH LỚP 10

Toán 10

Toán 10 Kết Nối Tri Thức

Toán 10 Chân Trời Sáng Tạo

Toán 10 Cánh Diều

Giải bài tập Toán 10 Kết Nối Tri Thức

Giải bài tập Toán 10 CTST

Giải bài tập Toán 10 Cánh Diều

Trắc nghiệm Toán 10

Đề thi giữa HK1 môn Toán 10

Ngữ văn 10

Ngữ Văn 10 Kết Nối Tri Thức

Ngữ Văn 10 Chân Trời Sáng Tạo

Ngữ Văn 10 Cánh Diều

Soạn Văn 10 Kết Nối Tri Thức

Soạn Văn 10 Chân Trời Sáng tạo

Soạn Văn 10 Cánh Diều

Văn mẫu 10

Đề thi giữa HK1 môn Ngữ Văn 10

Tiếng Anh 10

Giải Tiếng Anh 10 Kết Nối Tri Thức

Giải Tiếng Anh 10 CTST

Giải Tiếng Anh 10 Cánh Diều

Trắc nghiệm Tiếng Anh 10 KNTT

Trắc nghiệm Tiếng Anh 10 CTST

Trắc nghiệm Tiếng Anh 10 CD

Giải Sách bài tập Tiếng Anh 10

Đề thi giữa HK1 môn Tiếng Anh 10

Vật lý 10

Vật lý 10 Kết Nối Tri Thức

Vật lý 10 Chân Trời Sáng Tạo

Vật lý 10 Cánh Diều

Giải bài tập Lý 10 Kết Nối Tri Thức

Giải bài tập Lý 10 CTST

Giải bài tập Lý 10 Cánh Diều

Trắc nghiệm Vật Lý 10

Đề thi giữa HK1 môn Vật Lý 10

Hoá học 10

Hóa học 10 Kết Nối Tri Thức

Hóa học 10 Chân Trời Sáng Tạo

Hóa học 10 Cánh Diều

Giải bài tập Hóa 10 Kết Nối Tri Thức

Giải bài tập Hóa 10 CTST

Giải bài tập Hóa 10 Cánh Diều

Trắc nghiệm Hóa 10

Đề thi giữa HK1 môn Hóa 10

Sinh học 10

Sinh học 10 Kết Nối Tri Thức

Sinh học 10 Chân Trời Sáng Tạo

Sinh học 10 Cánh Diều

Giải bài tập Sinh 10 Kết Nối Tri Thức

Giải bài tập Sinh 10 CTST

Giải bài tập Sinh 10 Cánh Diều

Trắc nghiệm Sinh học 10

Đề thi giữa HK1 môn Sinh 10

Lịch sử 10

Lịch Sử 10 Kết Nối Tri Thức

Lịch Sử 10 Chân Trời Sáng Tạo

Lịch Sử 10 Cánh Diều

Giải bài tập Lịch Sử 10 KNTT

Giải bài tập Lịch Sử 10 CTST

Giải bài tập Lịch Sử 10 Cánh Diều

Trắc nghiệm Lịch sử 10

Đề thi giữa HK1 môn Lịch Sử 10

Địa lý 10

Địa Lý 10 Kết Nối Tri Thức

Địa Lý 10 Chân Trời Sáng Tạo

Địa Lý 10 Cánh Diều

Giải bài tập Địa Lý 10 KNTT

Giải bài tập Địa Lý 10 CTST

Giải bài tập Địa Lý 10 Cánh Diều

Trắc nghiệm Địa lý 10

Đề thi giữa HK1 môn Địa lý 10

GDKT & PL 10

GDKT & PL 10 Kết Nối Tri Thức

Đề thi giữa HK1 môn GDKT&PL 10

GDKT & PL 10 Chân Trời Sáng Tạo

GDKT & PL 10 Cánh Diều

Giải bài tập GDKT & PL 10 KNTT

Giải bài tập GDKT & PL 10 CTST

Giải bài tập GDKT & PL 10 CD

Trắc nghiệm GDKT & PL 10

Công nghệ 10

Công nghệ 10 Kết Nối Tri Thức

Công nghệ 10 Chân Trời Sáng Tạo

Công nghệ 10 Cánh Diều

Giải bài tập Công nghệ 10 KNTT

Giải bài tập Công nghệ 10 CTST

Giải bài tập Công nghệ 10 CD

Trắc nghiệm Công nghệ 10

Đề thi giữa HK1 môn Công nghệ 10

Tin học 10

Tin học 10 Kết Nối Tri Thức

Tin học 10 Chân Trời Sáng Tạo

Tin học 10 Cánh Diều

Giải bài tập Tin học 10 KNTT

Giải bài tập Tin học 10 CTST

Giải bài tập Tin học 10 Cánh Diều

Trắc nghiệm Tin học 10

Đề thi giữa HK1 môn Tin học 10

Cộng đồng

Hỏi đáp lớp 10

Tư liệu lớp 10

Xem nhiều nhất tuần

Đề thi giữa HK1 lớp 10

Đề thi giữa HK2 lớp 10

Đề thi HK1 lớp 10

Đề thi HK2 lớp 10

Video bồi dưỡng HSG môn Toán

Toán 10 Cánh Diều Bài tập cuối chương 1

Toán 10 Chân trời sáng tạo Bài 2: Tập hợp

Toán 10 Kết nối tri thức Bài 1: Mệnh đề

Soạn bài Ra-ma buộc tội - Ngữ văn 10 Tập 1 Cánh Diều

Soạn bài Chữ người tử tù - Nguyễn Tuân - Ngữ văn 10 KNTT

Soạn bài Thần Trụ Trời - Ngữ văn 10 CTST

Văn mẫu về Tây Tiến

Văn mẫu về Cảm xúc mùa thu (Thu hứng)

Văn mẫu về Bình Ngô đại cáo

Văn mẫu về Chữ người tử tù

YOMEDIA YOMEDIA ×

Thông báo

Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.

Bỏ qua Đăng nhập ×

Thông báo

Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.

Đồng ý ATNETWORK ON zunia.vn QC Bỏ qua >>

Từ khóa » Tích Vô Hướng Lớp 10