Hình Học 10 Bài 3: Tích Của Vectơ Với Một Số - HOC247
Có thể bạn quan tâm
Ta đã biết thế nào là tổng và hiệu của hai vectơ. Bây giờ lấy vectơ a cộng với chính nó thì ta sẽ được 2 lần vectơ a. Bài học này sẽ giúp các em hiểu được tích của vectơ và một hằng số có phải là một vectơ khác không?
ATNETWORK YOMEDIA1. Tóm tắt lý thuyết
1.1. Định nghĩa của một vectơ và một số
1.2. Các tính chất của phép nhân vectơ với số
1.3. Điều kiện để hai vectơ cùng phương
1.4. Biểu thị một vectơ qua hai vectơ không cùng phương
2. Bài tập minh hoạ
3. Luyện tập bài 3 chương 1 hình học 10
3.1 Trắc nghiệm về Tích của vectơ với một số
3.2 Bài tập SGK và Nâng Cao về Tích của vectơ với một số
4. Hỏi đáp về bài 3 chương 1 hình học 10
Tóm tắt lý thuyết
1.1. Định nghĩa của một vectơ và một số
Xem hình vẽ minh họa và ta có các nhận xét sau:
Xét hai vectơ \(\vec{a}\) và \(\vec{b}\) ta nhận thấy rằng:
Chúng có giá song song với nhau và cùng hướng, độ lớn về chiều dài của \(\vec{b}\) gấp 2 lần độ lớn chiều dài của \(\vec{a}\)
Lúc đó, ta viết rằng: \(\vec{b}=2\vec{a}\)
Xét đến hai vectơ \(\vec{c}\) và \(\vec{d}\) ta có nhận xét:
Chúng có giá song song và ngược hướng, độ lớn về chiều dài của \(\vec{d}\) gấp 3 lần độ lớn chiều dài của \(\vec{c}\)
Lúc đó, ta viết rằng: \(\vec{d}=-3\vec{c}\)
Định nghĩa:
Tích của vectơ \(\vec{a}\) với số thực k là một vectơ, kí hiệu là \(k\vec{a}\), được xác định như sau:
- Nếu \(k\geq 0\) thì vectơ \(k\vec{a}\) cùng hướng với vectơ \(\vec{a}\).
- Nếu \(k<0\) thì vectơ \(k\vec{a}\) ngược hướng với vectơ \(\vec{a}\).
- Độ dài của vectơ \(k\vec{a}\) bằng \(|k|.|\vec{a}|\).
1.2. Các tính chất của phép nhân vectơ với số
1.3. Điều kiện để hai vectơ cùng phương
Chúng ta cùng xem qua hình ảnh sau:
Một cách tổng quá, ta có:
Vectơ \(\vec{b}\) cùng phương với vectơ \(\vec{a}\neq \vec{0}\) khi và chỉ khi tồn tại số k sao cho \(\vec{b}=k\vec{a}\)
Ứng dụng vào ba điểm thẳng hàng:
Điều kiện cần và đủ để ba điểm A, B, C thẳng hàng là có số k sao cho \(\vec{AB}=k\vec{AC}\)
1.4. Biểu thị một vectơ qua hai vectơ không cùng phương
Dựa vào hình trên, ta có định lí sau:
Cho hai vectơ không cùng phương \(\vec{a}\) và \(\vec{b}\). Khi đó mọi vectơ \(\vec{x}\) đều có thể hiển thị một cách duy nhất qua hai vectơ \(\vec{a}\) và \(\vec{b}\), nghĩa là có cặp số duy nhất m và n sao cho:
\(\vec{x}=m\vec{a}+n\vec{b}\)
Bài tập minh họa
Bài 1:
Cho tam giác OAB vuông cân với \(OA=OB=a\). Tính độ dài của các vectơ \(\vec{OA}+\vec{OB}\); \(3\vec{OA}+4\vec{OB}\)
Hướng dẫn:
Do tam giác OAB vuông cân tại O có cạnh là a. Dễ dàng tính được \(\vec{OA}+\vec{OB}\) theo quy tắc hình bình hành, \(\vec{OA}+\vec{OB}=\vec{OD}\)
Độ lớn của \(|\vec{OD}|\)=\(a\sqrt{2}\)
Tương tự, ta tính \(3\vec{OA}+4\vec{OB}\)
Nhận thấy rằng \(3|\vec{OA}|=3a;4|\vec{OB}|=4a\)
Theo quy tắc hình bình hành và theo hình vẽ, ta có \(3\vec{OA}+4\vec{OB}=\vec{OC}\)
Độ lớn của \(|\vec{OC}|=5a\) theo định lý Pytago.
Bài 2:
Chứng minh rằng với tứ giác ABCD bất kì, ta luôn có hệ thức: \(\vec{AB}-\vec{AD}=\vec{CB}-\vec{CD}\)
Hướng dẫn:
Đề yêu cầu cần chứng minh \(\vec{AB}-\vec{AD}=\vec{CB}-\vec{CD}\)
Ta viết lại: \(\Leftrightarrow \vec{AB}+\vec{DA}=\vec{CB}+\vec{DC}=\vec{DB}\Rightarrow dpcm\)
Bài 3:
Cho hình chữ nhật có \(AB=5cm\), \(BC=10cm\). Tính \(|\vec{AB}+\vec{AC}+\vec{AD}|\).
Hướng dẫn:
Như hình trên, chúng ta có thể viết lại như sau:
\(\vec{AB}+\vec{AC}+\vec{AD}=\vec{DC}+\vec{AC}+\vec{AD}=\vec{AC}+\vec{AC}=2\vec{AC}\)
Vậy \(|\vec{AB}+\vec{AC}+\vec{AD}|=2|\vec{AC}|\)
Bằng Pytago, ta dễ dàng tính toán được \(2|\vec{AC}|=10\sqrt{5}(cm)\)
Bài 4:
Cho tam giác ABC. M là điểm thuộc đoạn BC sao cho \(MB=2MC\). Chứng minh rằng: \(\vec{AM}=\frac{1}{3}\vec{AB}+\frac{2}{3}\vec{AC}\)
Hướng dẫn:
Theo giả thiết, \(MB=2MC\).
Trên AB lấy điểm D sao cho \(AD=\frac{1}{3}AB\), trên AC lấy điểm E sao cho \(CE=\frac{1}{3}AC\)
Vậy, theo đề được viết lại như sau: \(\frac{1}{3}\vec{AB}=\vec{AD};\frac{2}{3}\vec{AC}=\vec{AE}\)
Cần chứng minh ADME là hình bình hành.
Thật vậy, với tỷ lệ đề cho, ta tìm được các cặp cạnh đối song song nhờ định lí Thales đảo.
Vậy: \(\left\{\begin{matrix} AD//ME\\ AE//DM \end{matrix}\right.\) hay ADME là hình bình hành
Nên \(\vec{AM}=\frac{1}{3}\vec{AB}+\frac{2}{3}\vec{AC}\).
3. Luyện tập Bài 3 chương 1 hình học 10
Ta đã biết thế nào là tổng và hiệu của hai vectơ. Bây giờ lấy vectơ a cộng với chính nó thì ta sẽ được 2 lần vectơ a. Bài học này sẽ giúp các em hiểu được tích của vectơ và một hằng số có phải là một vectơ khác không?
3.1 Trắc nghiệm về Tích của vectơ với một số
Để cũng cố bài học xin mời các em cũng làm Bài kiểm tra Trắc nghiệm Hình học 10 Chương 1 Bài 3 để kiểm tra xem mình đã nắm được nội dung bài học hay chưa.
-
Câu 1:
Tìm khẳng định sai:
- A. Hai vectơ cùng phương với một vectơ thứ ba khác \(\vec{0}\) thì cùng phương
- B. Hai vectơ cùng hướng với một vectơ thứ ba khác \(\vec{0}\) thì cùng phương
- C. Ba vectơ \(\vec{a},\vec{b},\vec{c}\) khác \(\vec{0}\) đôi một cùng phương thì ít nhất có hai vectơ cùng phương
- D. Để \(\vec{a}\) và \(\vec{b}\) bằng nhau thì \(|\vec{a}|=|\vec{b}|\)
-
Câu 2:
Cho hình bình hành ABCD tâm O. Mệnh đề sai là?
- A. \(\vec{AB}=\vec{CD}\)
- B. \(\vec{AD}=\vec{BC}\)
- C. \(\vec{AO}=\vec{OC}\)
- D. \(\vec{OD}=\vec{BO}\)
-
Câu 3:
Cho tam giác ABC đều cạnh a, H là trung điểm của BC. Vectơ \(\vec{CA}-\vec{HC}\) có độ dài là?
- A. \(\frac{a\sqrt{3}}{2}\)
- B. \(\frac{a\sqrt{5}}{2}\)
- C. \(\frac{a\sqrt{7}}{2}\)
- D. \(\frac{3a}{2}\)
Câu 4-10: Mời các em đăng nhập xem tiếp nội dung và thi thử Online để củng cố kiến thức và nắm vững hơn về bài học này nhé!
3.2 Bài tập SGK và Nâng Cao về Tích của vectơ với một số
Bên cạnh đó các em có thể xem phần hướng dẫn Giải bài tập Hình học 10 Chương 1 Bài 3 sẽ giúp các em nắm được các phương pháp giải bài tập từ SGK hình học 10 Cơ bản và Nâng cao.
Bài tập 1 trang 17 SGK Hình học 10
Bài tập 2 trang 17 SGK Hình học 10
Bài tập 3 trang 17 SGK Hình học 10
Bài tập 4 trang 17 SGK Hình học 10
Bài tập 5 trang 17 SGK Hình học 10
Bài tập 6 trang 17 SGK Hình học 10
Bài tập 7 trang 17 SGK Hình học 10
Bài tập 8 trang 17 SGK Hình học 10
Bài tập 9 trang 17 SGK Hình học 10
Bài tập 1.20 trang 31 SBT Hình học 10
Bài tập 1.21 trang 35 SBT Hình học 10
Bài tập 1.22 trang 31 SBT Hình học 10
Bài tập 1.23 trang 31 SBT Hình học 10
Bài tập 1.24 trang 31 SBT Hình học 10
Bài tập 1.25 trang 31 SBT Hình học 10
Bài tập 1.26 trang 31 SBT Hình học 10
Bài tập 1.27 trang 31 SBT Hình học 10
Bài tập 1.28 trang 32 SBT Hình học 10
Bài tập 1.29 trang 32 SBT Hình học 10
Bài tập 1.30 trang 32 SBT Hình học 10
Bài tập 1.31 trang 32 SBT Hình học 10
Bài tập 1.32 trang 32 SBT Hình học 10
Bài tập 1.33 trang 32 SBT Hình học 10
Bài tập 1.34 trang 32 SBT Hình học 10
Bài tập 1.35 trang 32 SBT Hình học 10
Bài tập 21 trang 23 SGK Hình học 10 NC
Bài tập 22 trang 24 SGK Toán 10 NC
Bài tập 23 trang 24 SGK Hình học 10 NC
Bài tập 24 trang 24 SGK Hình học 10 NC
Bài tập 25 trang 24 SGK Hình học 10 NC
Bài tập 26 trang 24 SGK Hình học 10 NC
Bài tập 27 trang 24 SGK Hình học 10 NC
Bài tập 28 trang 24 SGK Hình học 10 NC
4. Hỏi đáp về bài 3 chương 1 hình học 10
Nếu có thắc mắc cần giải đáp các em có thể để lại câu hỏi trong phần Hỏi đáp, cộng đồng Toán HỌC247 sẽ sớm trả lời cho các em.
-- Mod Toán Học 10 HỌC247
NONEBài học cùng chương
Hình học 10 Bài 1: Các định nghĩa Hình học 10 Bài 2: Tổng và hiệu của hai vectơ Hình học 10 Bài 4: Hệ trục tọa độ Hình học 10 Ôn tập chương 1 Vectơ ADSENSE ADMICRO Bộ đề thi nổi bật UREKA AANETWORKXEM NHANH CHƯƠNG TRÌNH LỚP 10
Toán 10
Toán 10 Kết Nối Tri Thức
Toán 10 Chân Trời Sáng Tạo
Toán 10 Cánh Diều
Giải bài tập Toán 10 Kết Nối Tri Thức
Giải bài tập Toán 10 CTST
Giải bài tập Toán 10 Cánh Diều
Trắc nghiệm Toán 10
Ngữ văn 10
Ngữ Văn 10 Kết Nối Tri Thức
Ngữ Văn 10 Chân Trời Sáng Tạo
Ngữ Văn 10 Cánh Diều
Soạn Văn 10 Kết Nối Tri Thức
Soạn Văn 10 Chân Trời Sáng tạo
Soạn Văn 10 Cánh Diều
Văn mẫu 10
Tiếng Anh 10
Giải Tiếng Anh 10 Kết Nối Tri Thức
Giải Tiếng Anh 10 CTST
Giải Tiếng Anh 10 Cánh Diều
Trắc nghiệm Tiếng Anh 10 KNTT
Trắc nghiệm Tiếng Anh 10 CTST
Trắc nghiệm Tiếng Anh 10 CD
Giải Sách bài tập Tiếng Anh 10
Vật lý 10
Vật lý 10 Kết Nối Tri Thức
Vật lý 10 Chân Trời Sáng Tạo
Vật lý 10 Cánh Diều
Giải bài tập Lý 10 Kết Nối Tri Thức
Giải bài tập Lý 10 CTST
Giải bài tập Lý 10 Cánh Diều
Trắc nghiệm Vật Lý 10
Hoá học 10
Hóa học 10 Kết Nối Tri Thức
Hóa học 10 Chân Trời Sáng Tạo
Hóa học 10 Cánh Diều
Giải bài tập Hóa 10 Kết Nối Tri Thức
Giải bài tập Hóa 10 CTST
Giải bài tập Hóa 10 Cánh Diều
Trắc nghiệm Hóa 10
Sinh học 10
Sinh học 10 Kết Nối Tri Thức
Sinh học 10 Chân Trời Sáng Tạo
Sinh học 10 Cánh Diều
Giải bài tập Sinh 10 Kết Nối Tri Thức
Giải bài tập Sinh 10 CTST
Giải bài tập Sinh 10 Cánh Diều
Trắc nghiệm Sinh học 10
Lịch sử 10
Lịch Sử 10 Kết Nối Tri Thức
Lịch Sử 10 Chân Trời Sáng Tạo
Lịch Sử 10 Cánh Diều
Giải bài tập Lịch Sử 10 KNTT
Giải bài tập Lịch Sử 10 CTST
Giải bài tập Lịch Sử 10 Cánh Diều
Trắc nghiệm Lịch sử 10
Địa lý 10
Địa Lý 10 Kết Nối Tri Thức
Địa Lý 10 Chân Trời Sáng Tạo
Địa Lý 10 Cánh Diều
Giải bài tập Địa Lý 10 KNTT
Giải bài tập Địa Lý 10 CTST
Giải bài tập Địa Lý 10 Cánh Diều
Trắc nghiệm Địa lý 10
GDKT & PL 10
GDKT & PL 10 Kết Nối Tri Thức
GDKT & PL 10 Chân Trời Sáng Tạo
GDKT & PL 10 Cánh Diều
Giải bài tập GDKT & PL 10 KNTT
Giải bài tập GDKT & PL 10 CTST
Giải bài tập GDKT & PL 10 CD
Trắc nghiệm GDKT & PL 10
Công nghệ 10
Công nghệ 10 Kết Nối Tri Thức
Công nghệ 10 Chân Trời Sáng Tạo
Công nghệ 10 Cánh Diều
Giải bài tập Công nghệ 10 KNTT
Giải bài tập Công nghệ 10 CTST
Giải bài tập Công nghệ 10 CD
Trắc nghiệm Công nghệ 10
Tin học 10
Tin học 10 Kết Nối Tri Thức
Tin học 10 Chân Trời Sáng Tạo
Tin học 10 Cánh Diều
Giải bài tập Tin học 10 KNTT
Giải bài tập Tin học 10 CTST
Giải bài tập Tin học 10 Cánh Diều
Trắc nghiệm Tin học 10
Cộng đồng
Hỏi đáp lớp 10
Tư liệu lớp 10
Xem nhiều nhất tuần
Đề thi giữa HK1 lớp 10
Đề thi giữa HK2 lớp 10
Đề thi HK1 lớp 10
Đề cương HK1 lớp 10
Đề thi HK2 lớp 10
Video bồi dưỡng HSG môn Toán
Toán 10 Kết nối tri thức Bài 1: Mệnh đề
Toán 10 Cánh Diều Bài tập cuối chương 1
Toán 10 Chân trời sáng tạo Bài 2: Tập hợp
Soạn bài Thần Trụ Trời - Ngữ văn 10 CTST
Soạn bài Ra-ma buộc tội - Ngữ văn 10 Tập 1 Cánh Diều
Soạn bài Chữ người tử tù - Nguyễn Tuân - Ngữ văn 10 KNTT
Văn mẫu về Chữ người tử tù
Văn mẫu về Tây Tiến
Văn mẫu về Cảm xúc mùa thu (Thu hứng)
Văn mẫu về Bình Ngô đại cáo
YOMEDIA YOMEDIA ×Thông báo
Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.
Bỏ qua Đăng nhập ×Thông báo
Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.
Đồng ý ATNETWORK ON QC Bỏ qua >>Từ khóa » Tích Của 2 Vecto
-
Tích Vô Hướng, Tích Có Hướng Của Hai Vectơ - Ứng Dụng
-
Lý Thuyết Tích Vô Hướng Của Hai Vectơ | SGK Toán Lớp 10
-
Tích Vô Hướng Của Hai Vectơ - Công Thức Học Tập
-
Tích Có Hướng Của 2 Vecto Là Gì ? Định Nghĩa Và Tính Chất
-
Lý Thuyết Tích Vô Hướng Của Hai Vectơ Hay, Chi Tiết - Toán Lớp 10
-
Tích Vô Hướng – Wikipedia Tiếng Việt
-
Lý Thuyết Về Tích Vô Hướng Của 2 Vectơ Và Các Dạng Bài Tập
-
Tích Vô Hướng Của Hai Vectơ: Lý Thuyết Và Giải Bài Tập - Marathon
-
Công Thức Tính Tích Có Hướng Của Hai Vectơ Trong Không Gian Và Bài ...
-
Tích Có Hướng Của Hai Véc Tơ Trong Không Gian
-
Hình Học 10 Bài 2: Tích Vô Hướng Của Hai Vectơ - Hoc247
-
[SGK Scan] Tích Vô Hướng Của Hai Vectơ - Sách Giáo Khoa
-
Tích Vô Hướng Của Hai Vectơ : Công Thức, định Nghĩa, Tính Chất, Bài Tập.