Hình Học 10 Bài 4: Hệ Trục Tọa độ
Có thể bạn quan tâm
Sau khi chúng ta đã đi về khái niệm về các vectơ, bài học cuối chương I sẽ là bài Hệ trục tọa độ, khái niệm này các em đã học từ lớp 7, trong bài học chúng ta sẽ tìm hiểu sâu hơn, nhiều khía cạnh hơn nội dung này.
ATNETWORK YOMEDIA1. Tóm tắt lý thuyết
1.1. Trục tọa độ
1.2. Hệ trục tọa độ Oij
1.3. Tọa độ của vectơ đối với hệ trục tọa độ
1.4. Biểu thức tọa độ của các vectơ
1.5. Tọa độ của điểm
1.6. Tọa độ trung điểm của đoạn thẳng và tọa độ trọng tâm của tam giác
2. Bài tập minh hoạ
3. Luyện tập bài 4 chương 1 hình học 10
3.1 Trắc nghiệm về hệ trục tọa độ
3.2 Bài tập SGK và Nâng Cao về hệ trục tọa độ
4. Hỏi đáp về bài 4 chương 1 hình học 10
Tóm tắt lý thuyết
1.1. Trục tọa độ
Khái niệm:
- Trục tọa độ (trục hoặc trục số) của một đường thẳng trên đó đã xác định một điểm O và một vectơ \(\vec{i}\) có độ dài bằng 1.
- Vectơ \(\vec{i}\) gọi là vectơ đơn vị của trục tọa độ.
Vì vậy, đối với mọi điểm M nằm trên trục tọa độ, ta luôn luôn xác định được số m nào đó sao cho \(\vec{OM}=m\vec{i}\). Số m đó gọi là tọa độ điểm M với trục.
Nếu có hai điểm A và B phân biệt nằm trên trục Ox thì tọa độ của vectơ \(\vec{AB}\) được kí hiệu là \(\bar{AB}\) và còn được gọi là độ dài đại số của vectơ \(\vec{AB}\) trên trục Ox.
1.2. Hệ trục tọa độ Oij
Trên hình đã mô tả đầy đủ về Hệ trục tọa độ. Trục ngang chứa \(\vec{i}\) gọi là trục hoành, trục dọc chứa \(\vec{j}\) gọi là trục tung và được kí hiệu là Oxy hoặc \((O;\vec{i};\vec{j})\)
1.3. Tọa độ của vectơ đối với hệ trục tọa độ
Đối với hệ trục tọa độ \((O;\vec{i};\vec{j})\), nếu \(\vec{a}=x\vec{i}+y\vec{j}\) thì cặp số \((x;y)\) được gọi là tọa độ của vectơ \(\vec{a}\), kí hiệu là \(\vec{a}=(x;y)\) hoặc \(\vec{a}(x;y)\). x là hoành độ, y là tung độ của vectơ \(\vec{a}\)
Từ định nghĩa trên, ta có nhận xét:
\(\vec{a}=(x;y)=\vec{b}=(x';y')\Leftrightarrow \left\{\begin{matrix} x=x'\\ y=y' \end{matrix}\right.\)
1.4. Biểu thức tọa độ của các vectơ
1.5. Tọa độ của điểm
Trong mặt phẳng Oxy, tọa độ của vectơ \(\vec{OM}\) chính là tọa độ của điểm \(M(x_M;y_M)\)
Một cách tổng quát, ta có:
Với hai điểm \(M(x_M;y_M)\) và \(N(x_N;y_N)\) thì ta có:
\(\vec{MN}=(x_N-x_M;y_N-y_M)\)
1.6. Tọa độ trung điểm của đoạn thẳng và tọa độ trọng tâm của tam giác
- Nếu M là trung điểm của đoạn thẳng AB thì:
\(x_M=\frac{x_a+x_B}{2};y_M=\frac{y_A+y_B}{2}\)
- Nếu G là trọng tâm của tam giác ABC thì:
\(x_G=\frac{x_a+x_B+x_C}{3};y_G=\frac{y_A+y_B+y_C}{3}\)
Bài tập minh họa
Bài 1:
Xác định tính đúng sai của các mệnh đề sau, nếu sai hãy giải thích:
1. Hai vectơ \(\vec{a}(3;1)\) và vectơ \(\vec{b}(1;3)\) là hai vectơ bằng nhau.
2. Hai vectơ bằng nhau khi chúng có hoành độ và tung độ bằng nhau.
3. Vectơ \(\vec{a}\) cùng phương với vectơ \(\vec{b}\) nếu vectơ \(\vec{a}\) có tung độ bằng 0.
4. Hai vectơ cùng phương khi hoành độ của vectơ này bằng k lần hoành độ của vectơ kia, tung độ của vectơ này bằng -k lần tung độ vectơ kia.
Hướng dẫn:
Câu 1 là sai vì chúng chỉ có độ lớn bằng nhau, chứ hai vectơ không bằng nhau.
Câu 2 là câu đúng.
Câu 3 là câu sai, vì nếu cùng phương chúng sẽ tỉ lệ hoành và tung theo hệ số k nào đó.
Câu 4 là câu sai vì chúng tỉ lệ theo k hoặc -k chứ không phải hoành là k, tung là -k.
Bài 2:
Biểu diễn các vectơ sau lên cùng một mặt phẳng tọa độ
\(\vec{a}=-2\vec{i}\), \(\vec{b}=3\vec{j}\), \(\vec{c}=2\vec{i}-\vec{j}\), \(\vec{d}=\frac{1}{2}\vec{i}+3\vec{j}\)
Hướng dẫn:
Bài 3:
Chứng minh 3 điểm \(A(-3;4);B(1;1);C(9;-5)\) thẳng hàng.
Hướng dẫn:
Để chứng minh ba điểm này thẳng hàng, ta viết các vectơ \(\vec{AB};\vec{AC}\) rồi xác định hệ số k sao cho hoành và tung của \(\vec{AB}\) đúng bằng k lần hoành và tung của \(\vec{AC}\).
Thật vậy, \(\vec{AB}=(4;-3)\)
\(\vec{AC}=(12;-9)\)
Như vậy, hệ số k được xác định là \(k=3\). Vậy 3 điểm A, B, C thằng hàng.
Bài 4:
Trong mặt phẳng tọa độ. Cho 3 điểm \(A(1;2); B(4;1);C(5;-2)\).
1. Tìm tọa độ trung điểm M của AC.
2. Tìm tọa độ trọng tâm G của tam giác ABC.
3. Tìm tọa độ điểm D sao cho ABCD là hình bình hành.
Hướng dẫn:
1. Do M là trung điểm của AC nên \(x_M=\frac{x_A+x_C}{2},y_M=\frac{y_A+y_C}{2}\)
\(\Leftrightarrow x_M=\frac{1+5}{2},y_M=\frac{2+(-2)}{2}\)\(\Leftrightarrow x_M=3,y_M=0\Leftrightarrow M(3;0)\)
2. G là trọng tâm của tam giác ABC nên \(x_G=\frac{x_A+x_B+x_C}{3},y_M=\frac{y_A+y_B+y_C}{3}\)
\(\Leftrightarrow x_G=\frac{1+4+5}{3},y_G=\frac{2+1+(-2)}{3}\)\(\Leftrightarrow x_G=\frac{10}{3},y_G=\frac{1}{3}\Leftrightarrow G \left ( \frac{10}{3};\frac{1}{3} \right )\)
3. ABCD là hình bình hành, suy ra \(\vec{AB}=\vec{DC}\)
Mà \(\vec{AB}=(4-1;1-2)\Leftrightarrow \vec{AB}=(3;-1)\)
Suy ra \(\left\{\begin{matrix} x_D=5-3\\ y_D=-2-(-1) \end{matrix}\right.\)
Vậy \(D(2;-1)\)
3. Luyện tập Bài 4 chương 1 hình học 10
Sau khi chúng ta đã đi về khái niệm về các vectơ, bài học cuối chương I sẽ là bài Hệ trục tọa độ, khái niệm này các em đã học từ lớp 7, trong bài học chúng ta sẽ tìm hiểu sâu hơn, nhiều khía cạnh hơn nội dung này.
3.1 Trắc nghiệm về hệ trục tọa độ
Để cũng cố bài học xin mời các em cũng làm Bài kiểm tra Trắc nghiệm Hình học 10 Chương 1 Bài 4 để kiểm tra xem mình đã nắm được nội dung bài học hay chưa.
-
Câu 1:
Cho 3 điểm \(A(2;1);B(4;-3);C(5;-1)\). Tọa độ trọng tâm G của tam giác là?
- A. \(G\left ( \frac{11}{3};-1 \right )\)
- B. \(G\left ( \frac{11}{3};1 \right )\)
- C. \(G\left ( \frac{13}{3};1 \right )\)
- D. \(G\left ( -\frac{13}{3};1 \right )\)
-
Câu 2:
Cho hai điểm \(A(1;1);B(-3;0)\). Tọa độ điểm C đối xứng với A qua B là:
- A. \(C(1;-2)\)
- B. \(C(-2;4)\)
- C. \(C(-7;-1)\)
- D. \(C(5;2)\)
-
Câu 3:
Cho \(\vec{a}=\frac{1}{4}\vec{i}+k\vec{j}; \vec{b}=2\vec{i}\). Giá trị của k để hai vectơ trên cùng phương là:
- A. \(k=8\)
- B. \(k=4\)
- C. \(k=2\)
- D. \(k=0\)
Câu 4-10: Mời các em đăng nhập xem tiếp nội dung và thi thử Online để củng cố kiến thức và nắm vững hơn về bài học này nhé!
3.2 Bài tập SGK và Nâng Cao về hệ trục tọa độ
Bên cạnh đó các em có thể xem phần hướng dẫn Giải bài tập Hình học 10 Chương 1 Bài 4 sẽ giúp các em nắm được các phương pháp giải bài tập từ SGK hình học 10 Cơ bản và Nâng cao.
Bài tập 1 trang 26 SGK Hình học 10
Bài tập 2 trang 26 SGK Hình học 10
Bài tập 3 trang 26 SGK Hình học 10
Bài tập 4 trang 26 SGK Hình học 10
Bài tập 5 trang 26 SGK Hình học 10
Bài tập 6 trang 27 SGK Hình học 10
Bài tập 7 trang 27 SGK Hình học 10
Bài tập 8 trang 27 SGK Hình học 10
Bài tập 1.36 trang 41 SBT Hình học 10
Bài tập 1.37 trang 41 SBT Hình học 10
Bài tập 1.38 trang 42 SBT Hình học 10
Bài tập 1.39 trang 42 SBT Hình học 10
Bài tập 1.40 trang 42 SBT Hình học 10
Bài tập 1.41 trang 42 SBT Hình học 10
Bài tập 1.42 trang 42 SBT Hình học 10
Bài tập 1.43 trang 42 SBT Hình học 10
Bài tập 1.44 trang 42 SBT Hình học 10
Bài tập 1.45 trang 42 SBT Hình học 10
Bài tập 1.46 trang 42 SBT Hình học 10
Bài tập 1.47 trang 42 SBT Hình học 10
Bài tập 29 trang 30 SGK Hình học 10 NC
Bài tập 30 trang 31 SGK Hình học 10 NC
Bài tập 31 trang 31 SGK Hình học 10 NC
Bài tập 32 trang 31 SGK Hình học 10 NC
Bài tập 33 trang 31 SGK Hình học 10 NC
Bài tập 34 trang 31 SGK Hình học 10 NC
Bài tập 35 trang 31 SGK Hình học 10 NC
Bài tập 36 trang 31 SGK Hình học 10 NC
4. Hỏi đáp về bài 4 chương 1 hình học 10
Nếu có thắc mắc cần giải đáp các em có thể để lại câu hỏi trong phần Hỏi đáp, cộng đồng Toán HỌC247 sẽ sớm trả lời cho các em.
-- Mod Toán Học 10 HỌC247
NONEBài học cùng chương
Hình học 10 Bài 1: Các định nghĩa Hình học 10 Bài 2: Tổng và hiệu của hai vectơ Hình học 10 Bài 3: Tích của vectơ với một số Hình học 10 Ôn tập chương 1 Vectơ ADSENSE ADMICRO Bộ đề thi nổi bật UREKA AANETWORKXEM NHANH CHƯƠNG TRÌNH LỚP 10
Toán 10
Toán 10 Kết Nối Tri Thức
Toán 10 Chân Trời Sáng Tạo
Toán 10 Cánh Diều
Giải bài tập Toán 10 Kết Nối Tri Thức
Giải bài tập Toán 10 CTST
Giải bài tập Toán 10 Cánh Diều
Trắc nghiệm Toán 10
Ngữ văn 10
Ngữ Văn 10 Kết Nối Tri Thức
Ngữ Văn 10 Chân Trời Sáng Tạo
Ngữ Văn 10 Cánh Diều
Soạn Văn 10 Kết Nối Tri Thức
Soạn Văn 10 Chân Trời Sáng tạo
Soạn Văn 10 Cánh Diều
Văn mẫu 10
Tiếng Anh 10
Giải Tiếng Anh 10 Kết Nối Tri Thức
Giải Tiếng Anh 10 CTST
Giải Tiếng Anh 10 Cánh Diều
Trắc nghiệm Tiếng Anh 10 KNTT
Trắc nghiệm Tiếng Anh 10 CTST
Trắc nghiệm Tiếng Anh 10 CD
Giải Sách bài tập Tiếng Anh 10
Vật lý 10
Vật lý 10 Kết Nối Tri Thức
Vật lý 10 Chân Trời Sáng Tạo
Vật lý 10 Cánh Diều
Giải bài tập Lý 10 Kết Nối Tri Thức
Giải bài tập Lý 10 CTST
Giải bài tập Lý 10 Cánh Diều
Trắc nghiệm Vật Lý 10
Hoá học 10
Hóa học 10 Kết Nối Tri Thức
Hóa học 10 Chân Trời Sáng Tạo
Hóa học 10 Cánh Diều
Giải bài tập Hóa 10 Kết Nối Tri Thức
Giải bài tập Hóa 10 CTST
Giải bài tập Hóa 10 Cánh Diều
Trắc nghiệm Hóa 10
Sinh học 10
Sinh học 10 Kết Nối Tri Thức
Sinh học 10 Chân Trời Sáng Tạo
Sinh học 10 Cánh Diều
Giải bài tập Sinh 10 Kết Nối Tri Thức
Giải bài tập Sinh 10 CTST
Giải bài tập Sinh 10 Cánh Diều
Trắc nghiệm Sinh học 10
Lịch sử 10
Lịch Sử 10 Kết Nối Tri Thức
Lịch Sử 10 Chân Trời Sáng Tạo
Lịch Sử 10 Cánh Diều
Giải bài tập Lịch Sử 10 KNTT
Giải bài tập Lịch Sử 10 CTST
Giải bài tập Lịch Sử 10 Cánh Diều
Trắc nghiệm Lịch sử 10
Địa lý 10
Địa Lý 10 Kết Nối Tri Thức
Địa Lý 10 Chân Trời Sáng Tạo
Địa Lý 10 Cánh Diều
Giải bài tập Địa Lý 10 KNTT
Giải bài tập Địa Lý 10 CTST
Giải bài tập Địa Lý 10 Cánh Diều
Trắc nghiệm Địa lý 10
GDKT & PL 10
GDKT & PL 10 Kết Nối Tri Thức
GDKT & PL 10 Chân Trời Sáng Tạo
GDKT & PL 10 Cánh Diều
Giải bài tập GDKT & PL 10 KNTT
Giải bài tập GDKT & PL 10 CTST
Giải bài tập GDKT & PL 10 CD
Trắc nghiệm GDKT & PL 10
Công nghệ 10
Công nghệ 10 Kết Nối Tri Thức
Công nghệ 10 Chân Trời Sáng Tạo
Công nghệ 10 Cánh Diều
Giải bài tập Công nghệ 10 KNTT
Giải bài tập Công nghệ 10 CTST
Giải bài tập Công nghệ 10 CD
Trắc nghiệm Công nghệ 10
Tin học 10
Tin học 10 Kết Nối Tri Thức
Tin học 10 Chân Trời Sáng Tạo
Tin học 10 Cánh Diều
Giải bài tập Tin học 10 KNTT
Giải bài tập Tin học 10 CTST
Giải bài tập Tin học 10 Cánh Diều
Trắc nghiệm Tin học 10
Cộng đồng
Hỏi đáp lớp 10
Tư liệu lớp 10
Xem nhiều nhất tuần
Đề thi giữa HK1 lớp 10
Đề thi giữa HK2 lớp 10
Đề thi HK1 lớp 10
Đề thi HK2 lớp 10
Video bồi dưỡng HSG môn Toán
Toán 10 Cánh Diều Bài tập cuối chương 1
Toán 10 Chân trời sáng tạo Bài 2: Tập hợp
Toán 10 Kết nối tri thức Bài 1: Mệnh đề
Soạn bài Ra-ma buộc tội - Ngữ văn 10 Tập 1 Cánh Diều
Soạn bài Chữ người tử tù - Nguyễn Tuân - Ngữ văn 10 KNTT
Soạn bài Thần Trụ Trời - Ngữ văn 10 CTST
Văn mẫu về Chữ người tử tù
Văn mẫu về Tây Tiến
Văn mẫu về Cảm xúc mùa thu (Thu hứng)
Văn mẫu về Bình Ngô đại cáo
YOMEDIA YOMEDIA ×Thông báo
Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.
Bỏ qua Đăng nhập ×Thông báo
Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.
Đồng ý ATNETWORK ON QC Bỏ qua >>Từ khóa » Trục Tọa độ
-
Lý Thuyết Hệ Trục Tọa độ | SGK Toán Lớp 10
-
Lý Thuyết Hệ Trục Tọa độ Trong Mặt Phẳng Toán 10
-
Lý Thuyết Hệ Trục Tọa độ - Môn Toán - Tìm đáp án, Giải Bài Tập, để Học
-
Bài 4. Hệ Trục Tọa độ - Củng Cố Kiến Thức
-
Tổng Hợp Lý Thuyết Chuẩn Nhất Về Hệ Trục Tọa độ - Toán Lớp 10
-
Hệ Tọa độ Descartes – Wikipedia Tiếng Việt
-
Lý Thuyết Hệ Trục Tọa độ: Bài 4. Hệ Trục Tọa độ
-
Công Thức Tính Trục Tọa độ Và Hệ Trục Tọa độ - Môn Toán Lớp 10
-
Lý Thuyết Hệ Trục Tọa độ Hay, Chi Tiết - Toán Lớp 10
-
Giải Toán 10 Bài 4. Hệ Trục Tọa độ
-
Lý Thuyết Hệ Trục Tọa độ - Chương Trình Toán Lớp 10
-
Toán 10 Chương 1 Bài 4: Hệ Trục Tọa độ - Học Hỏi Net
-
Soạn Hình Học 10 Bài 4: Hệ Trục Tọa độ