Hình Học 11 Bài 1: Vectơ Trong Không Gian - HOC247
Có thể bạn quan tâm
Nội dung bài học sẽ giúp các em nắm được các khái niệm Vectơ trong không gian, phương pháp chứng minh ba vectơ đồng phẳng. Bên cạnh đó là các ví dụ minh họa sẽ giúp các em hình thành các kĩ năng giải bài tập liên quan đến vectơ trong không gian.
ATNETWORK YOMEDIA1. Tóm tắt lý thuyết
1.1. Các phép tính vectơ
1.2. Điều kiện đồng phẳng của ba vectơ
2. Bài tập minh hoạ
3. Luyện tập bài 1 chương 3 hình học 11
3.1 Trắc nghiệm về Vectơ trong không gian
3.2 Bài tập SGK và Nâng Cao về Vectơ trong không gian
4. Hỏi đáp về bài 1 chương 3 hình học 11
Tóm tắt lý thuyết
1.1. Các phép tính vectơ
a) Quy tắc hình bình hành
- Nếu ABCD là hình bình hành thì: \(\overrightarrow {AC} = \overrightarrow {AB} + \overrightarrow {AD}.\)
b) Quy tắc ba điểm đối với phép cộng vectơ
- Cho ba điểm A, B, C bất kì thì \(\overrightarrow {AC} = \overrightarrow {AB} + \overrightarrow {BC}\).
(1).png)
- Quy tắc ba điểm với phép trừ vectơ: \(\overrightarrow {AB} = \overrightarrow {OB} - \overrightarrow {OA} ..\)
c) Quy tắc hình hộp
- Cho hình hộp ABCD. A’B’C’D’ thì \(\overrightarrow {AC'} = \overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {{\rm{AA'}}}\).
d. Quy tắc nhận vectơ với một số:
- Cho vectơ \(\vec a\) và một số thực \(k \ne 0\) ta được vectơ \(k \vec a\) có các tính chất sau:
+ \(\left| {k.\overrightarrow a } \right| = \left| k \right|.\left| {\overrightarrow a } \right|{\rm{ }}\).
+ Nếu k>0 thì \(\vec a\) cùng hướng với \(k \vec a\).
+ Nếu k<0 thì \(k \vec a\) ngược hướng với \(k \vec a\).
1.2. Điều kiện đồng phẳng của ba vectơ
a) Vectơ cùng phương
- Điều kiện cần và đủ để hai vectơ \(\vec a, \vec b\)cùng phương là có một số thực k để \(\overrightarrow a = k.\overrightarrow b.\)
b) Vectơ đồng phẳng
- Trong không gian ba vectơ được gọi là đồng phẳng nếu các giá của chúng cùng song song với một mặt phẳng.
- Điều kiện để ba vectơ đồng phẳng: Cho \(\vec a, \vec b\) là hai vectơ không cùng phương và vectơ \(\vec c\). Ba vectơ \(\vec a, \vec b\) và \(\vec c\) đồng phẳng khi và chỉ khi có hai số thực k, l sao cho: \(\overrightarrow c = k.\overrightarrow a + l.\overrightarrow b .\)
Bài tập minh họa
Ví dụ 1:
Cho hình lăng trụ ABC.A’B’C’. Hãy nêu tên các vecto bằng nhau có điểm đầu và điểm cuối là các đỉnh của hình lăng trụ.
Hướng dẫn giải:

Theo tính chất hình lăng trụ ta có:
\(\begin{array}{l} \overrightarrow {AB} = \overrightarrow {A'B'} ;\,\,\overrightarrow {BC} = \overrightarrow {B'C'} ;\,\,\overrightarrow {CA} = \overrightarrow {C'A'} \\ \overrightarrow {AB} = - \overrightarrow {BA} ;\,\,\overrightarrow {BC} = - \overrightarrow {CB} ;\,\,\overrightarrow {CA} = - \overrightarrow {AC} \\ \overrightarrow {{\rm{AA'}}} = \overrightarrow {BB'} = \overrightarrow {CC'} = - \overrightarrow {{\rm{A'A}}} = - \overrightarrow {B'B} = - \overrightarrow {C'C} . \end{array}\)
Ví dụ 2:
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Chứng minh rằng: \(\overrightarrow {SA} + \overrightarrow {SC} = \overrightarrow {SB} + \overrightarrow {SD}\).
Hướng dẫn giải:

Gọi O là tâm của hình bình hành ABCD. Ta có:
\(\begin{array}{l} \overrightarrow {SA} + \overrightarrow {AO} = \overrightarrow {SO} \\ \overrightarrow {SC} + \overrightarrow {CO} = \overrightarrow {SO} \\ \Rightarrow \overrightarrow {SA} + \overrightarrow {SC} = 2\overrightarrow {SO} (1) \end{array}\)
Theo quy tắc hình bình hành: \(\overrightarrow {{\rm{SB}}} + \overrightarrow {SD} = 2\overrightarrow {SO} (2)\)
Từ (1) và (2) ta có: \(\overrightarrow {SA} + \overrightarrow {SC} = \overrightarrow {SB} + \overrightarrow {SD}\).
Ví dụ 3:
Cho tứ diện ABCD. Trên cạnh AD lấy điểm M sao cho \(\overrightarrow {AM} = 3\overrightarrow {MD}\) và trên cạnh BC lấy điểm N sao cho \(\overrightarrow {NB} = - 3\overrightarrow {NC}\). Chứng tỏ rằng \(\overrightarrow {AB} ,\overrightarrow {DC} ,\overrightarrow {MN}\) đồng phẳng.
Hướng dẫn giải:
Theo giả thiết ta có: \(\overrightarrow {AM} = 3\overrightarrow {MD} \Rightarrow \overrightarrow {MA} = - \overrightarrow {MD}\) và \(\overrightarrow {{\rm{NB}}} = - 3\overrightarrow {NC}\)
Mà: \(\overrightarrow {{\rm{MN}}} = \overrightarrow {MA} + \overrightarrow {AB} + \overrightarrow {BN}\)
và \(\overrightarrow {{\rm{MN}}} = \overrightarrow {MD} + \overrightarrow {DC} + \overrightarrow {CN} (1)\)
\(\Rightarrow 3\overrightarrow {MN} = 3\overrightarrow {MD} + 3\overrightarrow {DC} + 3\overrightarrow {CN} (2)\)
\(\begin{array}{l} (1) + (2) \Rightarrow 4\overrightarrow {MN} = \overrightarrow {MA} + 3\overrightarrow {MD} + \overrightarrow {AB} + 3\overrightarrow {DC} + \overrightarrow {BN} + 3\overrightarrow {CN} \\ \Leftrightarrow 4\overrightarrow {MN} = \overrightarrow {MA} + 3\overrightarrow {MD} \Leftrightarrow \overrightarrow {MN} = \frac{1}{4}\overrightarrow {MA} + \frac{3}{4}\overrightarrow {MD} \end{array}\)
Hệ thức trên chứng tỏ: \(\overrightarrow {AB} ,\overrightarrow {DC} ,\overrightarrow {MN}\) đồng phẳng.
3. Luyện tập Bài 1 chương 3 hình học 11
Nội dung bài học sẽ giúp các em nắm được các khái niệm Vectơ trong không gian, phương pháp chứng minh ba vectơ đồng phẳng. Bên cạnh đó là các ví dụ minh họa sẽ giúp các em hình thành các kĩ năng giải bài tập liên quan đến vectơ trong không gian.
3.1 Trắc nghiệm về Vectơ trong không gian
Để cũng cố bài học xin mời các em cũng làm Bài kiểm tra Trắc nghiệm Hình học 11 Bài 1 để kiểm tra xem mình đã nắm được nội dung bài học hay chưa.
-
Câu 1:
Trong không gian cho điểm O và bốn điểm A, B, C, D không thẳng hàng. Điều kiện cần và đủ để A, B, C, D tạo thành hình bình hành là:
- A. \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} = \overrightarrow 0 \)
- B. \(\overrightarrow {OA} + \overrightarrow {OC} = \overrightarrow {OB} + \overrightarrow {OD} \)
- C. \(\overrightarrow {OA} + \frac{1}{2}\overrightarrow {OB} = \overrightarrow {OC} + \frac{1}{2}\overrightarrow {OD} \)
- D. \(\overrightarrow {OA} + \frac{1}{2}\overrightarrow {OC} = \overrightarrow {OB} + \frac{1}{2}\overrightarrow {OD} \)
-
Câu 2:
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Đặt \(\overrightarrow {SA} = \overrightarrow a ;\overrightarrow {SB} = \overrightarrow b ;\overrightarrow {SC} = \overrightarrow c ;\overrightarrow {SD} = \overrightarrow d \). Khẳng định nào sau đây đúng?
- A. \(\overrightarrow a + \overrightarrow c = \overrightarrow b + \overrightarrow d \)
- B. \(\overrightarrow a + \overrightarrow b = \overrightarrow c + \overrightarrow d \)
- C. \(\overrightarrow a + \overrightarrow d = \overrightarrow b + \overrightarrow c \)
- D. \(\overrightarrow a + \overrightarrow b + \overrightarrow c + \overrightarrow d = \overrightarrow 0 \)
-
Câu 3:
Cho tứ diện ABCD. Người ta định nghĩa "G là trọng tâm tứ diện ABCD khi \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = \overrightarrow 0 \)". Khẳng định nào sau đây là sai?
- A. G là trung điểm của IJ với I là trung điểm của AB và J là trung điểm của CD
- B. G là trung điểm của đoạn thẳng nối trung điểm của AC và BD
- C. G là trung điểm của đoạn thẳng nối trung điểm của AD và BC
- D. Chưa thể xác định được.
Câu 4-10: Mời các em đăng nhập xem tiếp nội dung và thi thử Online để củng cố kiến thức và nắm vững hơn về bài học này nhé!
3.2 Bài tập SGK và Nâng Cao về Vectơ trong không gian
Bên cạnh đó các em có thể xem phần hướng dẫn Giải bài tập Hình học 11 Bài 1 sẽ giúp các em nắm được các phương pháp giải bài tập từ SGK hình học 11 Cơ bản và Nâng cao.
Bài tập 1 trang 91 SGK Hình học 11
Bài tập 2 trang 91 SGK Hình học 11
Bài tập 3 trang 91 SGK Hình học 11
Bài tập 4 trang 91 SGK Hình học 11
Bài tập 5 trang 92 SGK Hình học 11
Bài tập 6 trang 92 SGK Hình học 11
Bài tập 7 trang 92 SGK Hình học 11
Bài tập 8 trang 92 SGK Hình học 11
Bài tập 9 trang 92 SGK Hình học 11
Bài tập 10 trang 92 SGK Hình học 11
Bài tập 3.1 trang 129 SBT Hình học 11
Bài tập 3.2 trang 129 SBT Hình học 11
Bài tập 3.3 trang 129 SBT Hình học 11
Bài tập 3.4 trang 130 SBT Hình học 11
Bài tập 3.5 trang 130 SBT Hình học 11
Bài tập 3.6 trang 130 SBT Hình học 11
Bài tập 3.7 trang 130 SBT Hình học 11
Bài tập 1 trang 91 SGK Hình học 11 NC
Bài tập 2 trang 91 SGK Toán 11 NC
Bài tập 3 trang 91 SGK Hình học 11 NC
Bài tập 4 trang 91 SGK Hình học 11 NC
Bài tập 5 trang 91 SGK Hình học 11 NC
Bài tập 6 trang 91 SGK Hình học 11 NC
4. Hỏi đáp về bài 1 chương 3 hình học 11
Nếu có thắc mắc cần giải đáp các em có thể để lại câu hỏi trong phần Hỏi đáp, cộng đồng Toán HỌC247 sẽ sớm trả lời cho các em.
-- Mod Toán Học 11 HỌC247
NONE Bài học cùng chương
Bộ đề thi nổi bật
UREKA AANETWORK
XEM NHANH CHƯƠNG TRÌNH LỚP 11
Toán 11
Toán 11 Kết Nối Tri Thức
Toán 11 Chân Trời Sáng Tạo
Toán 11 Cánh Diều
Giải bài tập Toán 11 KNTT
Giải bài tập Toán 11 CTST
Trắc nghiệm Toán 11
Ngữ văn 11
Ngữ Văn 11 Kết Nối Tri Thức
Ngữ Văn 11 Chân Trời Sáng Tạo
Ngữ Văn 11 Cánh Diều
Soạn Văn 11 Kết Nối Tri Thức
Soạn Văn 11 Chân Trời Sáng Tạo
Văn mẫu 11
Tiếng Anh 11
Tiếng Anh 11 Kết Nối Tri Thức
Tiếng Anh 11 Chân Trời Sáng Tạo
Tiếng Anh 11 Cánh Diều
Trắc nghiệm Tiếng Anh 11 KNTT
Trắc nghiệm Tiếng Anh 11 CTST
Tài liệu Tiếng Anh 11
Vật lý 11
Vật lý 11 Kết Nối Tri Thức
Vật Lý 11 Chân Trời Sáng Tạo
Vật lý 11 Cánh Diều
Giải bài tập Vật Lý 11 KNTT
Giải bài tập Vật Lý 11 CTST
Trắc nghiệm Vật Lý 11
Hoá học 11
Hoá học 11 Kết Nối Tri Thức
Hoá học 11 Chân Trời Sáng Tạo
Hoá Học 11 Cánh Diều
Giải bài tập Hoá 11 KNTT
Giải bài tập Hoá 11 CTST
Trắc nghiệm Hoá học 11
Sinh học 11
Sinh học 11 Kết Nối Tri Thức
Sinh Học 11 Chân Trời Sáng Tạo
Sinh Học 11 Cánh Diều
Giải bài tập Sinh học 11 KNTT
Giải bài tập Sinh học 11 CTST
Trắc nghiệm Sinh học 11
Lịch sử 11
Lịch Sử 11 Kết Nối Tri Thức
Lịch Sử 11 Chân Trời Sáng Tạo
Giải bài tập Sử 11 KNTT
Giải bài tập Sử 11 CTST
Trắc nghiệm Lịch Sử 11
Địa lý 11
Địa Lý 11 Kết Nối Tri Thức
Địa Lý 11 Chân Trời Sáng Tạo
Giải bài tập Địa 11 KNTT
Giải bài tập Địa 11 CTST
Trắc nghiệm Địa lý 11
GDKT & PL 11
GDKT & PL 11 Kết Nối Tri Thức
GDKT & PL 11 Chân Trời Sáng Tạo
Giải bài tập KTPL 11 KNTT
Giải bài tập KTPL 11 CTST
Trắc nghiệm GDKT & PL 11
Công nghệ 11
Công nghệ 11 Kết Nối Tri Thức
Công nghệ 11 Cánh Diều
Giải bài tập Công nghệ 11 KNTT
Giải bài tập Công nghệ 11 Cánh Diều
Trắc nghiệm Công nghệ 11
Tin học 11
Tin học 11 Kết Nối Tri Thức
Tin học 11 Cánh Diều
Giải bài tập Tin học 11 KNTT
Giải bài tập Tin học 11 Cánh Diều
Trắc nghiệm Tin học 11
Cộng đồng
Hỏi đáp lớp 11
Tư liệu lớp 11
Xem nhiều nhất tuần
Đề thi giữa HK2 lớp 11
Đề thi HK1 lớp 11
Đề thi giữa HK1 lớp 11
Đề thi HK2 lớp 12
Tôi yêu em - Pu-Skin
Đề cương HK1 lớp 11
Video bồi dưỡng HSG môn Toán
Công nghệ 11 Bài 16: Công nghệ chế tạo phôi
Chí Phèo
Cấp số cộng
Cấp số nhân
Văn mẫu và dàn bài hay về bài thơ Đây thôn Vĩ Dạ
YOMEDIA YOMEDIA ×Thông báo
Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.
Bỏ qua Đăng nhập ×Thông báo
Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.
Đồng ý ATNETWORK ON
QC Bỏ qua >>
Từ khóa » Bài Tập Vectơ Trong Không Gian 11
-
Giải Toán 11 Bài 1 : Vectơ Trong Không Gian
-
20 Dạng Bài Vectơ Trong Không Gian, Quan Hệ Vuông Góc Trong ...
-
Chuyên đề Vector Trong Không Gian, Quan Hệ Vuông Góc
-
Véc Tơ Trong Không Gian - Toán 11
-
Chuyên đề Vecto Trong Không Gian Quan Hệ Vuông Góc
-
Hình Học 11 - Vectơ Trong Không Gian
-
Giải Toán Lớp 11 Bài 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 Trang 91, 92 SGK Hì
-
Giải Bài Tập SGK Toán 11 Bài 1 : Vectơ Trong Không Gian
-
Vecto Trong Không Gian Lớp 11 - CungHocVui
-
Giải Bài 1: Vecto Trong Không Gian | Hình Học 11 Trang 85 - Tech12h
-
90 Câu Trắc Nghiệm VecTơ Trong Không Gian Có Đáp Án - Toán 11
-
Vectơ Trong Không Gian - Giải Bài Tập SGK Toán 11
-
Toán 11 Bài 1: Vectơ Trong Không Gian Trang 91, 92 - Haylamdo
-
Vecto Trong Không Gian (Toán 11) - Buổi 1 - YouTube