Hình Học 11 Ôn Tập Chương 1 Phép Dời Hình Và Phép đồng Dạng ...

YOMEDIA NONE Trang chủ Toán 11 Chương 1: Phép Dời Hình Và Phép Đồng Dạng Trong Mặt Phẳng Hình học 11 Ôn tập chương 1 Phép dời hình và Phép đồng dạng trong mặt phẳng ADMICRO Lý thuyết10 Trắc nghiệm92 BT SGK 185 FAQ

Bài ôn tập chương Phép dời hình và Phép đồng dạng trong mặt phẳng sẽ giúp các em hệ thống lại toàn bộ kiến thức đã học ở chương I. Thông qua các sơ đồ tư duy, các em sẽ có được cách ghi nhớ bài một cách dễ dàng, hiệu quả.

ATNETWORK YOMEDIA

1. Tóm tắt lý thuyết

1.1. Nội dung đã được học

1.2. Ghi nhớ phép biến hình qua sơ đồ tư duy

2. Bài tập minh hoạ

3.Luyện tập bài 9 chương 1 hình học 11

3.1 Trắc nghiệm về phép dời hình và Phép đồng dạng trong mặt phẳng

3.2 Bài tập SGK và Nâng Cao về phép dời hình và Phép đồng dạng trong mặt phẳng

4. Hỏi đáp về bài 9 chương 1 hình học 11

Tóm tắt lý thuyết

Ôn tập chương phép biến hình trong mặt phẳng

1.1. Nội dung đã được học

a) Tổng quan

Các phép biến hình

b) Các kí hiệu

Kí hiệu các phép dời hình và đồng dạng trong mặt phẳng

c) Biểu thức tọa độ

Biểu thức tọa độ Phép dời hình và Phép đồng dạng

d) Sơ đồ tính chất

Tính chất phép dời hình và phép đồng dạng

1.2. Ghi nhớ phép biến hình qua sơ đồ tư duy

a) Sơ đồ các phép biến hình

Sơ đồ các phép biến hình

b) Sơ đồ biểu diễn mối liên hệ giữa các phép biến hình

Mối liên hệ giữa các phép biến hình

Bài tập minh họa

Bài tập 1:

Trong mặt phẳng (Oxy) cho \(\overrightarrow u = \left( {1; - 2} \right)\)

a) Viết phương trình ảnh của mỗi đường trong trường hợp sau:

+) Đường thẳng a có phương trình: 3x-5y+1=0 ?

+) Đường thẳng b có phương trình: 2x+y+100=0

b) Viết phương trình đường tròn ảnh của đường tròn (C ): \({x^2} + {y^2} - 4{\rm{x}} + y - 1 = 0\)

c) Viết phương trình đường (E) ảnh của (E): \(\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1\)

d) Viết phương trình ảnh của (H): \(\frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{9} = 1\)

Hướng dẫn giải:

a) Gọi M(x;y) thuộc các đường đã cho và M’(x’;y’) thuộc các đường ảnh của chúng.

Theo công thức tọa độ của phép tịnh tiến ta có: \(\left\{ \begin{array}{l}x' = 1 + x\\y' = - 2 + y\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x = x' - 1\\y = y' + 2\end{array} \right.\)

Thay x, y vào phương trình các đường ta có:

Đường thẳng a’: 3(x’-1)-5(y’+2)+1=0 \( \Leftrightarrow \)3x’-5y’-12=0

Đường thẳng b’: 2(x’-1)+(y’+2)+100=0 hay : 2x’+y’+100=0

b) Đường tròn (C’): \({\left( {x' - 1} \right)^2} + {\left( {y' + 2} \right)^2} - 4\left( {x' - 1} \right) + y' + 2 - 1 = 0\)

Hay: \({x^2} + {y^2} - 6{\rm{x}} + 5y + 10 = 0\)

c) Đường (E’): \(\frac{{{{\left( {x' - 1} \right)}^2}}}{9} + \frac{{{{\left( {y' + 2} \right)}^2}}}{4} = 1 \Leftrightarrow \frac{{{{\left( {x - 1} \right)}^2}}}{9} + \frac{{{{\left( {y + 2} \right)}^2}}}{4} = 1\)

d) Đường (H’): \(\frac{{{{\left( {x' - 1} \right)}^2}}}{{16}} - \frac{{{{\left( {y' + 2} \right)}^2}}}{9} = 1 \Leftrightarrow \frac{{{{\left( {x - 1} \right)}^2}}}{{16}} - \frac{{{{\left( {y + 2} \right)}^2}}}{9} = 1\).

Bài tập 2:

Cho điểm M(2;-3). Tìm ảnh của điểm M qua phép đối xứng trục d: y-2x=0.

Hướng dẫn giải:

Gọi N(x;y) là điểm đối xứng với M qua d và H là trung điểm của MN thì M,N đối xứng nhau qua d thì điều kiện là: \(\left\{ \begin{array}{l}\overrightarrow {MN} .\overrightarrow U = 0\quad \left( 1 \right)\\H \in d\quad \quad \left( 2 \right)\end{array} \right.\,\)

Ta có: \(\overrightarrow {MN} = \left( {x - 2;y + 3} \right)\quad \overrightarrow U = \left( {1;2} \right)\quad H = \left( {\frac{{x + 2}}{2};\frac{{y - 3}}{2}} \right)\).

Điều kiện (*) \( \Leftrightarrow \left\{ \begin{array}{l}\left( {x - 2} \right).1 + \left( {y + 3} \right).2 = 0\\\frac{{x + 2}}{2} = \frac{{y - 3}}{2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x + 2y + 4 = 0\\y = x + 5\end{array} \right. \Rightarrow \left\{ \begin{array}{l}y = \frac{1}{3}\\x = - \frac{{14}}{3}\end{array} \right. \Rightarrow N = \left( { - \frac{{14}}{3};\frac{1}{3}} \right).\)

Bài tập 3:

Trong mặt phẳng Oxy cho đường tròn (O;R) : \({x^2} + {y^2} + 2{\rm{x}} - 6y + 6 = 0\)và (E) : \(\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1\) điểm I(1;2). Tìm ảnh của (O;R) và (E) qua phép đối xứng tâm I.

Hướng dẫn giải:

Gọi M(x;y) là điểm bất kỳ thuộc (O;R) và (E).

M’(x’;y’) là ảnh của M qua phép đối xứng tâm I.

Khi đó I là trung điểm của MM’ nên ta có:

\(\left\{ \begin{array}{l}{x_I} = \frac{{x + x'}}{2}\\{y_I} = \frac{{y + y'}}{2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x' = 2.1 - x\\y' = 2.2 - y\end{array} \right.\)

\(\Rightarrow \left\{ \begin{array}{l}x = 2 - x'\\y = 4 - y'\end{array} \right. \Rightarrow \left[ \begin{array}{l}{\left( {2 - x'} \right)^2} + {\left( {4 - y'} \right)^2} + 2\left( {2 - x'} \right) - 6\left( {4 - y'} \right) + 6 = 0\\\frac{{{{\left( {2 - x'} \right)}^2}}}{9} + \frac{{{{\left( {4 - y'} \right)}^2}}}{4} = 1\end{array} \right.\)

\( \Leftrightarrow \left[ \begin{array}{l}{x^2} + {y^2} - 6{\rm{x}} - 2y + 6 = 0\\\frac{{{{\left( {2 - x} \right)}^2}}}{9} + \frac{{{{\left( {4 - y} \right)}^2}}}{4} = 1\end{array} \right.\)

Vậy ảnh của (O;R) và (E) qua phép đối xứng tâm I có phương trình lần lượt là:

\({x^2} + {y^2} - 6{\rm{x}} - 2y + 6 = 0;\,\,\frac{{{{\left( {2 - x} \right)}^2}}}{9} + \frac{{{{\left( {4 - y} \right)}^2}}}{4} = 1\).

Bài tập 4:

Trong mặt phẳng tọa độ Oxy, cho đường tròn (O): \({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} = 4.\) Tìm phương trình đường tròn (O’) là ảnh của (O) qua phép vị tự tâm O tỉ số k=2.

Hướng dẫn giải:

Tâm I của (O) có tọa độ I(1;1) bán kính R=2.

Nếu (O’) có tâm là J và bán kính R’ là ảnh của (O) qua phép vị tự tâm O ta có đẳng thức vectơ:

\(\overrightarrow {{\rm{OJ}}} = 2\overrightarrow {OI} \Leftrightarrow \left\{ \begin{array}{l}x' - 0 = 2.1\\y' - 0 = 2.1\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x' = 2\\y' = 2\end{array} \right. \Rightarrow J\left( {2;2} \right)\).

R’=2R=2.2=4.

Vậy (O’): \({\left( {x - 2} \right)^2} + {\left( {y - 2} \right)^2} = 16\).

3. Luyện tập Bài 9 chương 1 hình học 11

Bài ôn tập chương Phép dời hình và Phép đồng dạng trong mặt phẳng sẽ giúp các em hệ thống lại toàn bộ kiến thức đã học ở chương I. Thông qua các sơ đồ tư duy, các em sẽ có được cách ghi nhớ bài một cách dễ dàng, hiệu quả.

3.1 Trắc nghiệm về phép dời hình và Phép đồng dạng trong mặt phẳng

Để cũng cố bài học xin mời các em cũng làm Bài kiểm tra Trắc nghiệm Hình học 11 Ôn tập chương I để kiểm tra xem mình đã nắm được nội dung bài học hay chưa.

  • Câu 1:

    Hình nào sau đây có vô số tâm đối xứng?

    • A. Hình lục giác đều.
    • B. Hình gồm hai đường thẳng cắt nhau.
    • C. Hình gồm hai đường thẳng song song.
    • D. Hình gồm hai đường tròn có bán kính bằng nhau.
  • Câu 2:

    Trong các khẳng định sau, khẳng định nào sai?

    • A. Phép tịnh tiến biến đường thẳng thành đường thẳng song song hoặc trùng với nó.
    • B. Phép đối xứng trục biến đường thẳng thành đường thẳng song song hoặc trùng với nó.
    • C. Phép đối xứng tâm biến đường thẳng thành đường thẳng song song hoặc trùng với nó.
    • D. Phép vị tự biến đường thẳng thành đường thẳng song song hoặc trùng với nó.
  • Câu 3:

    Trong các mệnh đề sau, mệnh đề nào sai?

    • A. Có phép tịnh tiến biến mọi điểm thành chính nó.
    • B. Có phép đối xứng trục biến mọi điểm thành chính nó.
    • C. Có phép quay biến mọi điểm thành chính nó.
    • D. Có phép vị tự biến mọi điểm thành chính nó.

Câu 4-10: Mời các em đăng nhập xem tiếp nội dung và thi thử Online để củng cố kiến thức và nắm vững hơn về bài học này nhé!

3.2 Bài tập SGK và Nâng Cao về phép dời hình và Phép đồng dạng trong mặt phẳng

Bên cạnh đó các em có thể xem phần hướng dẫn Giải bài tập Hình học 11 Ôn tập chương I sẽ giúp các em nắm được các phương pháp giải bài tập từ SGK hình học 11 Cơ bản và Nâng cao.

Bài tập 1 trang 33 SGK Hình học 11

Bài tập 2 trang 33 SGK Hình học 11

Bài tập 3 trang 33 SGK Hình học 11

Bài tập 4 trang 34 SGK Hình học 11

Bài tập 1 trang 34 SGK Hình học 11

Bài tập 2 trang 34 SGK Hình học 11

Bài tập 3 trang 34 SGK Hình học 11

Bài tập 4 trang 34 SGK Hình học 11

Bài tập 5 trang 34 SGK Hình học 11

Bài tập 6 trang 34 SGK Hình học 11

Bài tập 5 trang 35 SGK Hình học 11

Bài tập 6 trang 35 SGK Hình học 11

Bài tập 7 trang 35 SGK Hình học 11

Bài tập 1 trang 35 SGK Hình học 11

Bài tập 2 trang 35 SGK Hình học 11

Bài tập 3 trang 35 SGK Hình học 11

Bài tập 4 trang 36 SGK Hình học 11

Bài tập 5 trang 36 SGK Hình học 11

Bài tập 6 trang 36 SGK Hình học 11

Bài tập 7 trang 36 SGK Hình học 11

Bài tập 8 trang 36 SGK Hình học 11

Bài tập 9 trang 36 SGK Hình học 11

Bài tập 10 trang 36 SGK Hình học 11

Bài tập 1.31 trang 37 SBT Hình học 11

Bài tập 1.32 trang 37 SBT Hình học 11

Bài tập 1.33 trang 37 SBT Hình học 11

Bài tập 1.34 trang 37 SBT Hình học 11

Bài tập 1.35 trang 37 SBT Hình học 10

Bài tập 1.36 trang 37 SBT Hình học 11

Bài tập 1.37 trang 37 SBT Hình học 11

Bài tập 1.38 trang 38 SBT Hình học 11

Bài tập 1.39 trang 38 SBT Hình học 11

Bài tập 1.40 trang 38 SBT Hình học 11

Bài tập 1.41 trang 38 SBT Hình học 11

Bài tập 1.42 trang 38 SBT Hình học 11

Bài tập 1.43 trang 38 SBT Hình học 11

Bài tập 1.44 trang 38 SBT Hình học 11

Bài tập 1.45 trang 38 SBT Hình học 11

Bài tập 1.46 trang 38 SBT Hình học 11

Bài tập 1.47 trang 38 SBT Hình học 11

Bài tập 1.48 trang 38 SBT Hình học 11

Bài tập 1.49 trang 39 SBT Hình học 11

Bài tập 1.50 trang 39 SBT Hình học 11

Bài tập 1.51 trang 39 SBT Hình học 11

Bài tập 1.52 trang 39 SBT Hình học 11

Bài tập 1.53 trang 39 SBT Hình học 11

Bài tập 1.54 trang 39 SBT Hình học 11

Bài tập 1.55 trang 39 SBT Hình học 11

Bài tập 1.56 trang 39 SBT Hình học 11

Bài tập 1.57 trang 39 SBT Hình học 11

Bài tập 1.58 trang 39 SBT Hình học 11

Bài tập 1.59 trang 40 SBT Hình học 11

Bài tập 1.60 trang 40 SBT Hình học 11

Bài tập 1.61 trang 40 SBT Hình học 11

Bài tập 1.62 trang 40 SBT Hình học 11

Bài tập 1.63 trang 40 SBT Hình học 11

Bài tập 1.64 trang 40 SBT Hình học 11

Bài tập 1.65 trang 40 SBT Hình học 11

Bài tập 1.66 trang 40 SBT Hình học 11

Bài tập 1.67 trang 41 SBT Hình học 11

Bài tập 1.68 trang 41 SBT Hình học 11

Bài tập 1.69 trang 41 SBT Hình học 11

Bài tập 1.70 trang 41 SBT Hình học 11

Bài tập 1.71 trang 41 SBT Hình học 11

Bài tập 1.72 trang 41 SBT Hình học 11

Bài tập 1.73 trang 41 SBT Hình học 11

Bài tập 1.74 trang 41 SBT Hình học 11

Bài tập 1.75 trang 42 SBT Hình học 11

Bài tập 1.76 trang 42 SBT Hình học 11

Bài tập 1.77 trang 42 SBT Hình học 11

Bài tập 1.78 trang 42 SBT Hình học 11

Bài tập 1 trang 34 SGK Hình học 11 NC

Bài tập 2 trang 34 SGK Hình học 11 NC

Bài tập 3 trang 34 SGK Hình học 11 NC

Bài tập 4 trang 34 SGK Hình học 11 NC

Bài tập 5 trang 34 SGK Hình học 11 NC

Bài tập 6 trang 34 SGK Hình học 11 NC

Bài tập 7 trang 34 SGK Hình học 11 NC

Bài tập 8 trang 35 SGK Hình học 11 NC

Bài tập 9 trang 35 SGK Hình học 11 NC

Bài tập 1 trang 35 SGK Hình học 11 NC

Bài tập 2 trang 35 SGK Hình học 11 NC

Bài tập 3 trang 35 SGK Hình học 11 NC

Bài tập 4 trang 35 SGK Hình học 11 NC

Bài tập 5 trang 35 SGK Hình học 11 NC

Bài tập 6 trang 35 SGK Hình học 11 NC

Bài tập 7 trang 36 SGK Hình học 11 NC

Bài tập 8 trang 36 SGK Hình học 11 NC

Bài tập 9 trang 36 SGK Hình học 11 NC

Bài tập 10 trang 36 SGK Hình học 11 NC

Bài tập 11 trang 36 SGK Hình học 11 NC

Bài tập 12 trang 36 SGK Hình học 11 NC

4. Hỏi đáp về bài 9 chương 1 hình học 11

Nếu có thắc mắc cần giải đáp các em có thể để lại câu hỏi trong phần Hỏi đáp, cộng đồng Toán HỌC247 sẽ sớm trả lời cho các em.

-- Mod Toán Học 11 HỌC247

NONE

Bài học cùng chương

Bài 1: Phép biến hình Hình học 11 Bài 1: Phép biến hình Bài 2: Phép tịnh tiến Hình học 11 Bài 2: Phép tịnh tiến Bài 3: Phép đối xứng trục Hình học 11 Bài 3: Phép đối xứng trục Bài 4: Phép đối xứng tâm Hình học 11 Bài 4: Phép đối xứng tâm Bài 5: Phép quay Hình học 11 Bài 5: Phép quay Bài 6: Khái niệm về phép dời hình và hai hình bằng nhau Hình học 11 Bài 6: Khái niệm về phép dời hình và hai hình bằng nhau ADSENSE ADMICRO Bộ đề thi nổi bật UREKA AANETWORK

XEM NHANH CHƯƠNG TRÌNH LỚP 11

Toán 11

Toán 11 Kết Nối Tri Thức

Toán 11 Chân Trời Sáng Tạo

Toán 11 Cánh Diều

Giải bài tập Toán 11 KNTT

Giải bài tập Toán 11 CTST

Trắc nghiệm Toán 11

Đề thi giữa HK1 môn Toán 11

Ngữ văn 11

Ngữ Văn 11 Kết Nối Tri Thức

Ngữ Văn 11 Chân Trời Sáng Tạo

Ngữ Văn 11 Cánh Diều

Soạn Văn 11 Kết Nối Tri Thức

Soạn Văn 11 Chân Trời Sáng Tạo

Văn mẫu 11

Đề thi giữa HK1 môn Ngữ Văn 11

Tiếng Anh 11

Tiếng Anh 11 Kết Nối Tri Thức

Tiếng Anh 11 Chân Trời Sáng Tạo

Tiếng Anh 11 Cánh Diều

Trắc nghiệm Tiếng Anh 11 KNTT

Trắc nghiệm Tiếng Anh 11 CTST

Tài liệu Tiếng Anh 11

Đề thi giữa HK1 môn Tiếng Anh 11

Vật lý 11

Vật lý 11 Kết Nối Tri Thức

Vật Lý 11 Chân Trời Sáng Tạo

Vật lý 11 Cánh Diều

Giải bài tập Vật Lý 11 KNTT

Giải bài tập Vật Lý 11 CTST

Trắc nghiệm Vật Lý 11

Đề thi giữa HK1 môn Vật Lý 11

Hoá học 11

Hoá học 11 Kết Nối Tri Thức

Hoá học 11 Chân Trời Sáng Tạo

Hoá Học 11 Cánh Diều

Giải bài tập Hoá 11 KNTT

Giải bài tập Hoá 11 CTST

Trắc nghiệm Hoá học 11

Đề thi giữa HK1 môn Hóa 11

Sinh học 11

Sinh học 11 Kết Nối Tri Thức

Sinh Học 11 Chân Trời Sáng Tạo

Sinh Học 11 Cánh Diều

Giải bài tập Sinh học 11 KNTT

Giải bài tập Sinh học 11 CTST

Trắc nghiệm Sinh học 11

Đề thi giữa HK1 môn Sinh 11

Lịch sử 11

Lịch Sử 11 Kết Nối Tri Thức

Lịch Sử 11 Chân Trời Sáng Tạo

Giải bài tập Sử 11 KNTT

Giải bài tập Sử 11 CTST

Trắc nghiệm Lịch Sử 11

Đề thi giữa HK1 môn Lịch Sử 11

Địa lý 11

Địa Lý 11 Kết Nối Tri Thức

Địa Lý 11 Chân Trời Sáng Tạo

Giải bài tập Địa 11 KNTT

Giải bài tập Địa 11 CTST

Trắc nghiệm Địa lý 11

Đề thi giữa HK1 môn Địa lý 11

GDKT & PL 11

GDKT & PL 11 Kết Nối Tri Thức

GDKT & PL 11 Chân Trời Sáng Tạo

Giải bài tập KTPL 11 KNTT

Giải bài tập KTPL 11 CTST

Trắc nghiệm GDKT & PL 11

Đề thi giữa HK1 môn KTPL 11

Công nghệ 11

Công nghệ 11 Kết Nối Tri Thức

Công nghệ 11 Cánh Diều

Giải bài tập Công nghệ 11 KNTT

Giải bài tập Công nghệ 11 Cánh Diều

Trắc nghiệm Công nghệ 11

Đề thi giữa HK1 môn Công nghệ 11

Tin học 11

Tin học 11 Kết Nối Tri Thức

Tin học 11 Cánh Diều

Giải bài tập Tin học 11 KNTT

Giải bài tập Tin học 11 Cánh Diều

Trắc nghiệm Tin học 11

Đề thi giữa HK1 môn Tin 11

Cộng đồng

Hỏi đáp lớp 11

Tư liệu lớp 11

Xem nhiều nhất tuần

Đề thi HK1 lớp 11

Đề thi giữa HK1 lớp 11

Đề thi HK2 lớp 12

Đề thi giữa HK2 lớp 11

Tôi yêu em - Pu-Skin

Video bồi dưỡng HSG môn Toán

Công nghệ 11 Bài 16: Công nghệ chế tạo phôi

Chí Phèo

Hạnh phúc một tang gia

Chữ người tử tù

Văn mẫu và dàn bài hay về bài thơ Đây thôn Vĩ Dạ

Cấp số cộng

Cấp số nhân

YOMEDIA YOMEDIA ×

Thông báo

Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.

Bỏ qua Đăng nhập ×

Thông báo

Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.

Đồng ý ATNETWORK ON zunia.vn QC Bỏ qua >>

Từ khóa » Sơ đồ Tư Duy Chương 1 Toán 11 Hình