Hình Học 12 Bài 1: Khái Niệm Về Mặt Tròn Xoay - Hoc247
Có thể bạn quan tâm
Nội dung bài học sẽ giới thiệu đến các em sự tạo thành hai mặt tròn xoay phổ biến là mặt nón và mặt trụ, các khái niệm hình nón, khối nón, hình trụ, khối trụ và các công thức tính diện tích xung quanh, diện tích toàn phần và thể tích của những vật thể tròn xoay dạng khối nón và khối trụ.
ATNETWORK YOMEDIA1. Video bài giảng
2. Tóm tắt lý thuyết
2.1. Mặt nón - Hình nón - Khối nón
2.2. Mặt trụ - Hình trụ - Khối trụ
3. Bài tập minh hoạ
4. Luyện tập Bài 1 Chương 2 Hình học Toán 12
4.1. Trắc nghiệm
4.2. Bài tập SGK
5. Hỏi đáp Bài 1 Chương 2 Hình học Toán 12
Tóm tắt lý thuyết
2.1. Mặt nón - Hình nón - Khối nón
a) Mặt nón
- Trong không gian cho hai đường thẳng \(\Delta\) và \(l\) cắt nhau tại O sao cho \((\widehat{\Delta ,l})=\alpha \, (0^{\circ}< \alpha < 90^{\circ}).\) Cho \(l\) quay quanh \(\Delta\) ta được mặt nón tròn xoay có:
+ \(l\) là đường sinh.
+ \(\Delta\) trục của mặt nón.
+ \(O=l\cap \Delta\) đỉnh của mặt nón.
+ \(2\alpha :\) góc ở đỉnh.
.png)
b) Hình nón
- Cắt mặt nón tròn xoay đỉnh O, trục \(\Delta\) bởi mặt phẳng (P) sao cho \((P)\perp \Delta ,O\notin (P).\)
- Hình giới hạn bởi mặt nón, mặt phẳng (P) được gọi là hình nón.
c) Khối nón
- Khối nón tròn xoay là phần không gian giới hạn bởi hình nón tròn xoay kể cả hình nón đó.

d) Công thức tính diện tích và thể tích liên quan đến hình nón, khối nón
- Cho hình nón có đường sinh \(l\), bán kính đáy \(R\), chiều cao \(h\), ta có các công thức sau:
+ Thể tích khối nón: \(V_{Khoi \, \, non}=\frac{1}{3}.S.h=\frac{1}{3}.\pi .R^{2}.h\).
+ Diện tích xung quanh hình nón: \(S_{xq}=\pi Rl\).
+ Diện tích toàn phần hình nón: \(S_{tp}=\pi Rl+\pi R^{2}\).
2.2. Mặt trụ - Hình trụ - Khối trụ
a) Mặt trụ
- Trong không gian, cho đường thẳng \(l\) song song và cách đường thẳng \(\Delta\) một khoảng R.
- Cho \(l\) quay quanh \(\Delta\) ta được một mặt tròn xoay được gọi là mặt trụ tròn xoay có:
+ \(l\) là đường sinh.
+ \(\Delta\) là trục mặt trụ.
+ R là bán kính mặt trụ.

b) Hình trụ
- Xét hình chữ nhật OABO'.
- Cho đường gấp khúc OABO' quay quanh OO' ta được hình trụ tròn xoay:
+ OA: Bán kính đường tròn đáy.
+ AB: đường sinh.
c) Khối trụ
- Khối trụ tròn xoay là phần không gian giới hạn bởi hình trụ tròn xoay kể cả hình trụ đó.

d) Các công thức tính toán liên quan đển hình trụ, khối trụ
+ Thể tích khối trụ: \(V=\pi .R^2.h\) (=Sđáy.h).
+ Diện tích xung quanh hình trụ: \(S_{xq}=2\pi .R.h\).
+ Diện tích toàn phân hình trụ: \(S_{tp}=2\pi .R.h+2\pi R^2\).
(Trong đó: R: bán kính đáy, h: chiều cao (k/c giữa hai đáy = OO').)
Bài tập minh họa
Ví dụ 1:
Trong không gian cho tam giác ABC vuông tại A có AB=a, AC = 2a. Quay tam giác ABC xung quanh cạnh AB ta được một khối nón. Tính thể tích V của khối nón đó.
Lời giải:
Hình nón thu được có bán kính đáy R=AC=2a, chiều cao h=AB=a.
Vậy thể tích khối nón là: \(V = \frac{1}{3}\pi {r^2}h = \frac{{4\pi {a^3}}}{3}.\)
Ví dụ 2:
Trong không gian cho tam giác ABC vuông tại A có có AB=5, AC=12. Cho đường gấp khúc BAC quay quanh cạnh BC ta được hình nón tròn xoay. Tính thể tích của khối nón đó.
Lời giải:
Khi quay đường gấp khúc BAC quay quanh cạnh BC ta được hai hình nón:
Hình nón thứ nhất có đường cao \({h_1} = BH\), Bán kính đáy \({R_1} = AH\).
Hình nón thứ hau có đường cao \({h_2} = CH\), Bán kính đáy \({R_2} = AH\).
Ta có: \(\frac{1}{{A{H^2}}} = \frac{1}{{A{B^2}}} + \frac{1}{{A{C^2}}} = \frac{{60}}{{13}}\)
\(BC = \sqrt {A{B^2} + A{C^2}} = 13\)
Vậy thể tích khối tròn xoay thu được là: \(V = \frac{1}{3}\pi {R_1}^2{h_1} + \frac{1}{3}\pi R_2^2{h_2} = \frac{1}{3}\pi A{H^2}(BH + CH) = \frac{{1200}}{{13}}\pi .\)
Ví dụ 3:
Thiết diện qua trục của một hình nón là một tam giác vuông có cạnh góc vuông bằng a.
a) Tính diện tích xung quanh và diện tích toàn phần của hình nón.
b) Tính thể tích của khối nó.
c) Một thiết diện qua đỉnh tạo với đáy một góc 600. Tính diện tích của thiết diện này.
Lời giải:
.png)
a) Thiết diện qua trục là tam giác SAB vuông cân tại S nên: \(\widehat A = \widehat B = {45^0}.\)
Diện tích xung quanh hình nón là: \({S_{xq}} = \pi Rl = \pi .OA.SA = \pi .\frac{a}{{\sqrt 2 }}.a = \frac{{\pi {a^2}}}{{\sqrt 2 }}.\)
Diện tích toàn phần hình nón là: \({S_{tp}} = {S_{xq}} + {S_{day}} = \frac{{\pi {a^2}}}{{\sqrt 2 }} + \frac{{\pi {a^2}}}{2} = \left( {\frac{1}{{\sqrt 2 }} + \frac{1}{2}} \right)\pi {a^2}.\)
b) Thể tích khối nón là: \(V = \frac{1}{3}\pi {R^2}h = \frac{1}{3}\pi .O{A^2}.SO = \frac{1}{3}\pi .\frac{{{a^2}}}{2}.\frac{a}{{\sqrt 2 }} = \frac{{\pi {a^3}}}{{6\sqrt 2 }}.\)
c) Thiết diện (SAC) qua đỉnh tạo với đáy một góc 600.
Kẻ \(OM \bot AC \Rightarrow SM \bot AC \Rightarrow \widehat {SMO} = {60^0}.\)
Do tam giác SMO vuông tại O nên \(OM = \frac{{SO}}{{\tan 60}} = \frac{{a\sqrt 6 }}{6}.\)
Tam giác OAM vuông tại M nên: \(AM = \sqrt {O{A^2} - O{M^2}} = \frac{{a\sqrt 3 }}{3}\).
Tam giác ABC vuông tại C (nội tiếp đường tròn) suy ra \(BC \bot AC.\)
Suy ra OM là đường trung bình của tam giác ABC.
Nên \(AC = 2AM = \frac{{2a\sqrt 3 }}{3}.\)
Ta có: \(SM = SO.\sin {60^0} = \frac{{a\sqrt 6 }}{3}.\)
Vậy diện tích thiết diện là: \({S_{SAC}} = \frac{1}{2}.SM.AC = \frac{1}{2}.\frac{{a\sqrt 6 }}{3}.\frac{{2a\sqrt 3 }}{3} = \frac{{{a^2}\sqrt 2 }}{3}.\)
Ví dụ 4:
Cho hình chữ nhật ABCD có AB = 2AD. Gọi V1 là thể tích khối trụ sinh ra do hình chữ nhật ABCD quay quanh đường thẳng AB và V2 là thể tích khối trụ sinh ra do hình chữ nhật ABCD quay quanh đường thẳng AD. Tính tỉ số \(\frac{V_2}{V_1}\).
Lời giải:
.png)
Khối trụ sinh ra do hình chữ nhật ABCD quay quanh đường thẳng AB có bán kính đáy AD, chiều cao AB: \({V_1} = AB.\left( {\pi A{D^2}} \right)\)
Khối trụ sinh ra do hình chữ nhật ABCD quay quanh đường thẳng AD có bán kính đáy AB, chiều cao AD: \({V_2} = AD.\left( {\pi A{B^2}} \right)\)
Vậy: \(\frac{{{V_2}}}{{{V_1}}} = \frac{{AD.\left( {\pi A{B^2}} \right)}}{{AB.\left( {\pi A{D^2}} \right)}} = \frac{{AB}}{{AD}} = 2.\)
Ví dụ 5:
Cho hình lăng trụ tam giác đều ABC.A’B’C’ có tất cả các cạnh đều bằng a. Tính diện tích xung quanh S của hình trụ tròn xoay ngoại tiếp lăng trụ.
Lời giải:
.png)
Diện tích xung quanh mặt trụ được tính theo công thức \({S_{xq}} = 2\pi .R.l\).
Gọi R là bán kính đường tròn ngoại tiếp \(\Delta ABC\).
\(\Rightarrow R = \frac{2}{3}.\frac{{a\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{3}\); \(l =AA'=a\).
Vậy diện tích cần tìm là \({S_{xq}} = 2\pi .\frac{{a\sqrt 3 }}{3}.a = 2\pi \frac{{{a^2}\sqrt 3 }}{3}\) (đvdt).
Ví dụ 6:
Một hình trụ có bán kính đáy R=5 cm và khoảng cách giữa hai đáy bằng 7 cm.
a) Tính diện tích xung quanh và diện tích toàn phần của hình trụ.
b) Tính thể tích của khối trụ
c) Cắt khối trụ bởi một mặt phẳng song song với trục và cách trụ 3cm. Hãy tính diện tích của thiết diện được tạo nên.
Lời giải:
.png)
Hình trụ có bán kính đáy R=5 và chiều cao h=7.
a) Diện tích xung quanh hình trụ là: \({S_{xq}} = 2\pi Rl = 2\pi .5.7 = 70\pi \,\,(c{m^2})\)
Diện tích toàn phần hình trụ là: \({S_{tp}} = {S_{xq}} + 2.{S_{day}} = 70\pi + 2\pi {.5^2} = 120\pi \,\,(c{m^2}).\)
b) Thể tích khối trụ là: \(V = \pi {R^2}h = \pi {.5^2}.7 = 175\pi \,\,(c{m^3}).\)
c) Gọi I là trung điểm của AB suy ra OI=3cm.
\(IB = \sqrt {O{B^2} - O{I^2}} = \sqrt {{5^2} - {3^2}} = 4.\)
Ta có: AB=2IB=8.
Dễ thấy thiết diện ABB'A' là hình chữ nhật.
Vậy diện tích thiết diện là: \({S_{ABB'A'}} = AB.AA' = 8.7 = 56\,\,(c{m^2}).\)
4. Luyện tập Bài 1 Chương 2 Hình học 12
Nội dung bài học sẽ giới thiệu đến các em sự tạo thành hai mặt tròn xoay phổ biến là mặt nón và mặt trụ, các khái niệm hình nón, khối nón, hình trụ, khối trụ và các công thức tính diện tích xung quanh, diện tích toàn phần và thể tích của những vật thể tròn xoay dạng khối nón và khối trụ.
4.1 Trắc nghiệm
Để củng cố bài học xin mời các em cùng làm Bài kiểm tra Trắc nghiệm Hình học 12 Chương 2 Bài 1 để kiểm tra xem mình đã nắm được nội dung bài học hay chưa.
-
Câu 1:
Khẳng định nào sau đây là sai?
- A. Thể tích khối cầu có bán kính R: \(V = \frac{4}{3}\pi {R^3}\).
- B. Diện tích mặt cầu có bán kính R: \(S = 4\pi {R^2}\).
- C. Thể tích của khối trụ có bán kính đáy R và chiều cao h là: \(V = \pi {R^2}h\).
- D. Thể tích của khối nón có bán kính đáy R và chiều cao h là: \(V = \frac{1}{3}{\pi ^2}{R^2}h\).
-
Câu 2:
Một khối nón tròn xoay có độ dài đường sinh l = 13 cm và bán kính đáy r=5 cm. Tính thể tích V của khối nón.
- A. \(V = 100\pi \,\,c{m^3}\)
- B. \(V = 300\pi \,\,c{m^3}\)
- C. \(V = \frac{325}{3}\pi \,\,c{m^3}\)
- D. \(V = 20\pi \,\,c{m^3}\)
-
Câu 3:
Một tam giác ABC vuông tại A có AB = 6, AC = 8. Cho đường gấp khúc ABC quay quanh cạnh AC được hình nón có diện tích xung quanh và diện tích toàn phần lần lượt là S1, S2. Hãy chọn kết quả đúng.
- A. \(\frac{{{S_1}}}{{{S_2}}} = \frac{8}{5}\)
- B. \(\frac{{{S_1}}}{{{S_2}}} = \frac{5}{8}\)
- C. \(\frac{{{S_1}}}{{{S_2}}} = \frac{5}{9}\)
- D. \(\frac{{{S_1}}}{{{S_2}}} = \frac{9}{5}\)
Câu 4-10: Mời các em đăng nhập xem tiếp nội dung và thi thử Online để củng cố kiến thức và nắm vững hơn về bài học này nhé!
4.2 Bài tập SGK
Bên cạnh đó các em có thể xem phần hướng dẫn Giải bài tập Hình học 12 Chương 2 Bài 1 sẽ giúp các em nắm được các phương pháp giải bài tập từ SGK Hình học 12 Cơ bản và Nâng cao.
Bài tập 1 trang 39 SGK Hình học 12
Bài tập 2 trang 39 SGK Hình học 12
Bài tập 3 trang 39 SGK Hình học 12
Bài tập 4 trang 39 SGK Hình học 12
Bài tập 5 trang 39 SGK Hình học 12
Bài tập 6 trang 39 SGK Hình học 12
Bài tập 7 trang 39 SGK Hình học 12
Bài tập 8 trang 40 SGK Hình học 12
Bài tập 9 trang 40 SGK Hình học 12
Bài tập 10 trang 40 SGK Hình học 12
Bài tập 2.1 trang 46 SBT Hình học 12
Bài tập 2.2 trang 47 SBT Hình học 12
Bài tập 2.3 trang 47 SBT Hình học 12
Bài tập 2.4 trang 47 SBT Hình học 12
Bài tập 2.5 trang 47 SBT Hình học 12
Bài tập 2.6 trang 47 SBT Hình học 12
Bài tập 2.7 trang 47 SBT Hình học 12
Bài tập 2.8 tr 47 SBT Hình học 12
Bài tập 2.9 trang 47 SBT Hình học 12
Bài tập 2.10 trang 48 SBT Hình học 12
Bài tập 2.11 trang 48 SBT Hình học 12
Bài tập 2.12 trang 49 SBT Hình học 12
Bài tập 11 trang 53 SGK Hình học 12 NC
Bài tập 12 trang 53 SGK Hình học 12 NC
Bài tập 13 trang 53 SGK Hình học 12 NC
Bài tập 14 trang 53 SGK Hình học 12 NC
Bài tập 15 trang 53 SGK Hình học 12 NC
Bài tập 16 trang 54 SGK Hình học 12 NC
Bài tập 17 trang 59 SGK Hình học 12 NC
Bài tập 18 trang 59 SGK Hình học 12 NC
Bài tập 19 trang 60 SGK Hình học 12 NC
Bài tập 20 trang 60 SGK Hình học 12 NC
Bài tập 21 trang 60 SGK Hình học 12 NC
5. Hỏi đáp Bài 1 Chương 2 Hình học Toán 12
Nếu có thắc mắc cần giải đáp các em có thể để lại câu hỏi trong phần Hỏi đáp, cộng đồng Toán HỌC247 sẽ sớm trả lời cho các em.
-- Mod Toán Học 12 HỌC247
NONE Bài học cùng chương
Bộ đề thi nổi bật
UREKA AANETWORK
XEM NHANH CHƯƠNG TRÌNH LỚP 12
Toán 12
Lý thuyết Toán 12
Giải bài tập SGK Toán 12
Giải BT sách nâng cao Toán 12
Trắc nghiệm Toán 12
Hình học 12 Chương 3
Ngữ văn 12
Lý thuyết Ngữ Văn 12
Soạn văn 12
Soạn văn 12 (ngắn gọn)
Văn mẫu 12
Soạn Ai đã đặt tên cho dòng sông
Tiếng Anh 12
Giải bài Tiếng Anh 12
Giải bài Tiếng Anh 12 (Mới)
Trắc nghiệm Tiếng Anh 12
Unit 9 Lớp 12 Deserts
Tiếng Anh 12 mới Unit 5
Vật lý 12
Lý thuyết Vật Lý 12
Giải bài tập SGK Vật Lý 12
Giải BT sách nâng cao Vật Lý 12
Trắc nghiệm Vật Lý 12
Ôn tập Vật lý 12 Chương 3
Hoá học 12
Lý thuyết Hóa 12
Giải bài tập SGK Hóa 12
Giải BT sách nâng cao Hóa 12
Trắc nghiệm Hóa 12
Hoá Học 12 Chương 5
Sinh học 12
Lý thuyết Sinh 12
Giải bài tập SGK Sinh 12
Giải BT sách nâng cao Sinh 12
Trắc nghiệm Sinh 12
Sinh Học 12 Chương 2 Tiến hóa
Lịch sử 12
Lý thuyết Lịch sử 12
Giải bài tập SGK Lịch sử 12
Trắc nghiệm Lịch sử 12
Lịch Sử 12 Chương 3 Lịch Sử VN
Địa lý 12
Lý thuyết Địa lý 12
Giải bài tập SGK Địa lý 12
Trắc nghiệm Địa lý 12
Địa Lý 12 VĐSD và BVTN
GDCD 12
Lý thuyết GDCD 12
Giải bài tập SGK GDCD 12
Trắc nghiệm GDCD 12
GDCD 12 Học kì 1
Công nghệ 12
Lý thuyết Công nghệ 12
Giải bài tập SGK Công nghệ 12
Trắc nghiệm Công nghệ 12
Công nghệ 12 Chương 3
Tin học 12
Lý thuyết Tin học 12
Giải bài tập SGK Tin học 12
Trắc nghiệm Tin học 12
Tin học 12 Chương 2
Cộng đồng
Hỏi đáp lớp 12
Tư liệu lớp 12
Xem nhiều nhất tuần
Video: Vợ nhặt của Kim Lân
Đề cương HK1 lớp 12
Video ôn thi THPT QG môn Sinh
Video ôn thi THPT QG môn Văn
Video ôn thi THPT QG môn Vật lý
Video ôn thi THPT QG Tiếng Anh
Video ôn thi THPT QG môn Hóa
Video ôn thi THPT QG môn Toán
Khái quát văn học Việt Nam từ đầu CMT8 1945 đến thế kỉ XX
Người lái đò sông Đà
Đất Nước- Nguyễn Khoa Điềm
Đàn ghi ta của Lor-ca
Ai đã đặt tên cho dòng sông
Tây Tiến
Quá trình văn học và phong cách văn học
YOMEDIA YOMEDIA ×Thông báo
Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.
Bỏ qua Đăng nhập ×Thông báo
Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.
Đồng ý ATNETWORK ON
QC Bỏ qua >>
Từ khóa » Bt Khái Niệm Về Mặt Tròn Xoay
-
Bài 1. Khái Niệm Về Mặt Tròn Xoay
-
Giải Toán 12 Bài 1 : Khái Niệm Về Mặt Tròn Xoay
-
Giải Toán 12: Bài 1. Khái Niệm Về Mặt Tròn Xoay
-
SGK Hình Học Lớp 12 – Giải Bài Tập Bài 1: Khái Niệm Về Mặt Tròn Xoay
-
Bài 1: Khái Niệm Về Mặt Tròn Xoay - Chương II - Hình Học Lớp 12
-
Toán 12 Bài 1: Khái Niệm Về Mặt Tròn Xoay
-
Khái Niệm Về Mặt Tròn Xoay - Kiến Thức Cơ Bản - Giải Bài Tập Hình ...
-
Khái Niệm Về Mặt Tròn Xoay - Các Kiến Thức Cần Nhớ
-
Giải Bài Tập Trang 39, 40 SGK Hình Học 12 - Thủ Thuật
-
Bài 8, 9, 10 Trang 40 Hình Học Lớp 12: Khái Niệm Về Mặt Tròn Xoay
-
Bài 1, 2, 3, 4 Trang 39 Sách Hình Học Lớp 12: Khái Niệm Về Mặt Tròn ...
-
Bài 1: Khái Niệm Về Mặt Tròn Xoay - Hoc24
-
Bài 5 Trang 39 Sách Giáo Khoa Hình Học Lớp 12