Hình Thang. Diện Tích Hình Thang - Lý Thuyết Toán

  1. Trang chủ
  2. Lý thuyết toán học
  3. Toán 5
  4. CHƯƠNG 3: HÌNH HỌC
  5. Hình thang. Diện tích hình thang
Hình thang. Diện tích hình thang Trang trước Mục Lục Trang sau

1. Hình thang

a) Cấu trúc

Hình thang \(ABCD\) có:

- Cạnh đáy \(AB\) và cạnh đáy \(DC\). Cạnh bên \(AD\) và cạnh bên \(BC\).

- Hai cạnh đáy là hai cạnh đối diện song song.

Hình thang có một cặp cạnh đối diện song song.

Chú ý: Hình thang có một cạnh bên vuông góc với hai đáy gọi là hình thang vuông.

b) Đường cao của hình thang

2. Diện tích hình thang

Quy tắc: Diện tích hình thang bằng tổng độ dài hai đáy nhân với chiều cao (cùng một đơn vị đo) rồi chia cho \(2\).

Ví dụ 1: Tính diện tích hình thang biết độ dài hai đáy lần lượt là \(18cm\) và \(14cm\); chiều cao là \(9cm\).

Phương pháp giải: Độ dài hai đáy và chiều cao đã có cùng đơn vị đo nên để tính diện tích ta lấy tổng độ dài hai đáy nhân với chiều cao rồi chia cho \(2\).

Cách giải:

Diện tích hình thang đó là:

\(\dfrac{{(18 + 14) \times 9}}{2} = 144\left( {c{m^2}} \right)\)

Đáp số: \(144c{m^2}\).

Ví dụ 2: Tính diện tích hình thang biết độ dài hai đáy lần lượt là \(4m\) và \(25dm\); chiều cao là \(32dm\).

Phương pháp giải: Độ dài hai đáy và chiều cao chưa cùng đơn vị đo nên ta đổi về cùng đơn vị đó, \(4m = 40dm\), sau đó để tính diện tích ta lấy tổng độ dài hai đáy nhân với chiều cao rồi chia cho \(2\).

Cách giải:

Đổi \(4m = 40dm\)

Diện tích hình thang đó là:

\(\dfrac{{(40 + 25) \times 32}}{2} = 1040\left( {d{m^2}} \right)\)

Đáp số: \(1040d{m^2}\)

3. Một số dạng bài tập

Dạng 1: Tính diện tích hình thang khi biết độ dài hai đáy và chiều cao

Phương pháp: Áp dụng công thức: \(S = \dfrac{{(a + b) \times h}}{2}\) hoặc \(S = (a + b) \times h:2\)

(\(S\) là diện tích, \(a,\,b\) là độ dài các cạnh đáy, \(h\) là chiều cao)

Dạng 2: Tính tổng độ dài hai đáy khi biết diện tích và chiều cao

Phương pháp: Từ công thức tính diện tích \(S = \dfrac{{(a + b) \times h}}{2}\) hoặc \(S = (a + b) \times h:2\), ta có công thức tính độ dài hai đáy như sau: \(a + b = \dfrac{{S \times 2}}{h}\) hoặc \(a + b = S \times 2:h\).

Lưu ý: Đề bài thường cho hiệu của hai đáy hoặc tỉ số giữa hai đáy và yêu cầu tìm độ dài của mỗi đáy. Học sinh cần nhớ hai dạng toán tổng – hiệu và tổng – tỉ.

Dạng 3: Tính chiều cao khi biết diện tích và độ dài hai đáy

Phương pháp: Từ công thức tính diện tích \(S = \dfrac{{(a + b) \times h}}{2}\) hoặc \(S = (a + b) \times h:2\), ta có công thức tính chiều cao như sau: \(h = \dfrac{{S \times 2}}{{a + b}}\) hoặc \(h = S \times 2:(a + b)\).

Dạng 4: Toán có lời văn

Phương pháp: Đọc kĩ đề bài, xác định dạng toán trong bài rồi giải bài toán đó.

Trang trước Mục Lục Trang sau

Có thể bạn quan tâm:

  • Diện tích hình thang, diện tích hình thoi
  • Hình chóp đều, hình chóp cụt đều
  • Ôn tập chương 8: Hình lăng trụ đứng. Hình chóp đều
  • Sự tương giao giữa đường thẳng và parabol
  • Ôn tập chương 7: Góc với đường tròn

Tài liệu

Sách giáo khoa Toán 6 tập 1 - Kết Nối Tri Thức Với Cuộc Sống

Sách giáo khoa Toán 6 tập 1 - Kết Nối Tri Thức Với Cuộc Sống

Các định lí về hình học phẳng tập I - Bồi dưỡng học sinh giỏi toán cấp 2

Các định lí về hình học phẳng tập I - Bồi dưỡng học sinh giỏi toán cấp 2

Toán 7 - Phiếu bài tập - Hai đường thẳng vuông góc (Lý thuyết + Bài tập)

Toán 7 - Phiếu bài tập  - Hai đường thẳng vuông góc (Lý thuyết + Bài tập)

Phương trình đường thẳng(Hình tọa độ)

Phương trình đường thẳng(Hình tọa độ)

Chuyên đề hình học không gian lớp 11

Chuyên đề hình học không gian lớp 11

Từ khóa » Toán Tính Diện Tích Hình Thang