HMBC Vs. H2BC - University Of Ottawa NMR Facility Blog

University of Ottawa NMR Facility Blog

A blog for the NMR users at the University of Ottawa and all others interested in NMR spectroscopy.

Tuesday, April 25, 2017

HMBC vs. H2BC

NMR spectroscopy is an indispensable tool for assigning the structure of organic compounds. One very useful method in the NMR toolbox is the Heteronuclear Multiple Bond Correlation (HMBC) experiment. HMBC data are 1H detected and provide a 2D correlation map between 1H and 13C similar to HMQC or HSQC except that the correlations are between protons and carbons separated by two, three and sometimes even four bonds. This long range information is very helpful in elucidating chemical structures, especially those with non-protonated carbons. The problem, however with HMBC data is that the correlations depend only on the magnitude of the long-range 1H-13C coupling constants. Two- or three- bond coupling constants are very similar in magnitude to one another and therefore it is not possible to distinguish between two- and three- bond correlations. Also, since many long range 1H-13C coupling constants (including two-bond coupling constants) are near zero, some correlations may be absent. These problems may make structure elucidation frustrating or impossible. The Heteronuclear 2 Bond Correlation (H2BC) experiment1 provides an HMBC-like correlation map with (almost) exclusively two-bond 1H-13C correlations. Unlike the correlations in the HMBC measurement, which rely exclusively on long range 1H-13C coupling constants, the 1H-13C correlations in the H2BC experiment rely on three-bond 3JH-H coupling between the protons on adjacent carbons. It is a combined HMQC-COSY experiment. The size of the H2BC correlations depends on the magnitude of the 3JH-H coupling constant. Three-bond 1H-13C correlations are possible only if four-bond 4JH-H coupling is significant. One disadvantage to the H2BC experiment is that all correlations between protons and non-protonated carbons are necessarily absent because of the absence of H-H coupling. In general, two-bond 1H-13C correlations that are weak or absent in HMBC spectra are strong in H2BC spectra and three-bond 1H-13C correlations which are strong in HMBC spectra are absent or very weak in H2BC spectra. The techniques are very complimentary. The figure below illustrates the complimentary nature of the two methods for styrene. The HMBC spectrum in the left panel was scaled up until some of the HMQC artifacts (color coded in blue) were visible. The data show only one 2-bond 1H-13C correlation (color coded in pink). The three-bond 1H-13C correlations are color coded in yellow. In comparison, the H2BC spectrum in the right panel shows exclusively two-bond 1H-13C correlations with the exception of those involving the C1 non-protonated carbon. 1. Nyberg, Duus, Sorensen. J. Am. Chem. Soc. 127, 6154 (2005).

1 comment:

Unknown said...

Many Thanks

December 19, 2019 at 3:24 AM Newer Post Older Post Home Subscribe to: Post Comments (Atom)

Glenn Facey

Glenn Facey

Search This Blog

Index of this BLOG

  • BLOG Index

Total Pageviews

Subject Headings

  • 1 (1)
  • 1-ADEQUATE (1)
  • 10B (1)
  • 11B (5)
  • 11B background (1)
  • 11B COSY (1)
  • 11B decoupling (1)
  • 11B SQ/DQ correlation (1)
  • 13C (3)
  • 13C decoupling (4)
  • 13C NMR of paramagnetic compounds (1)
  • 13C satellites (2)
  • 13C-14N (2)
  • 13C-14N coupling (2)
  • 13C-19F coupling (2)
  • 13C-2H coupling (3)
  • 13C-31P coupling (2)
  • 13C-59Co (1)
  • 14N decoupling (1)
  • 15N (1)
  • 17O NMR (2)
  • 180 degree pulses (1)
  • 19F (5)
  • 19F decoupling (4)
  • 19F-13C HMQC (1)
  • 19F-1H HOESY (1)
  • 1D HOESY (2)
  • 1D HSQC (2)
  • 1D NOESY (1)
  • 1D TOCSY (2)
  • 1H-11B HMQC (1)
  • 1H-19F HOESY (1)
  • 1H-2H coupling (1)
  • 1H-31P HOESY (1)
  • 23Na (2)
  • 23Na background (1)
  • 27Al decoupling (1)
  • 29Si CP (1)
  • 29Si DEPT (1)
  • 2D NMR (38)
  • 2H decoupling (1)
  • 2H NMR (4)
  • 31P (2)
  • 31P decoupling (4)
  • 31P-109Ag HMQC (1)
  • 31P-13C HMQC (1)
  • 51V (1)
  • 59Co (1)
  • 79Br (1)
  • 90 degree pulse (4)
  • accessing a used NMR magnet (1)
  • acids (1)
  • acoustic ringing (3)
  • ADEQUATE (1)
  • adiabatic decoupling (1)
  • adiabatic pulses (2)
  • air (1)
  • antacid tablet (1)
  • anthranilic acid (1)
  • apodization (3)
  • APT (1)
  • ASA (1)
  • ASCII data (2)
  • background signal (3)
  • background suppression (2)
  • backward linear prediction (2)
  • baseline correction (3)
  • baseline roll (2)
  • benchtop NMR (2)
  • BIRD filter (1)
  • Bloch Siegert shifts (1)
  • Blood (1)
  • broadband decoupling (1)
  • broadband probe (1)
  • broadening (1)
  • butane (1)
  • cable length (1)
  • Canada (1)
  • candy canes (1)
  • CEST (1)
  • chemical equivalence (1)
  • chemical exchange agents (3)
  • chemical shift referencing (3)
  • chemical shift tensor (4)
  • Christmas (7)
  • cinnamon (1)
  • citric acid (1)
  • coffee (1)
  • complexed solvents (1)
  • composite pulses (2)
  • concentration dependent chemical shifts (1)
  • concentration gradient (2)
  • contact time (2)
  • cost of NMR probes (1)
  • COSY (9)
  • COSY 45 (1)
  • COSY 90 (2)
  • COSY vs TOCSY (1)
  • coupling (7)
  • coupling between magnetically equivalent nuclei (1)
  • CP (23)
  • CP vs Bloch decay (2)
  • CPMG (1)
  • cranberries (1)
  • cryoprobe (1)
  • D2O shake (1)
  • data processing software (1)
  • dead time (1)
  • decoupler calibration (2)
  • decoupling (7)
  • decoupling bandwidth (2)
  • DEPT (7)
  • DEPT 135 (1)
  • DEPTQ (1)
  • deuterium (1)
  • diffusion (1)
  • digital filtering (1)
  • diphosphate (1)
  • dipolar coupling (2)
  • dipolar dephasing (5)
  • dirty probe (2)
  • distortion (1)
  • DNP (1)
  • DOSY (2)
  • double presaturation (1)
  • double quantum filter (2)
  • double quantum filtered COSY (1)
  • DSS (1)
  • dummy scans (1)
  • dust (1)
  • earth's field NMR (1)
  • echo (1)
  • ECOSY (1)
  • edible oils (1)
  • edited HSQC (1)
  • effects of bad shimming (1)
  • Eggshell (1)
  • environmental instability (1)
  • erroneous line shape specification (1)
  • ethane (1)
  • exchange (6)
  • excitation profile (3)
  • EXSY (2)
  • external chemical shift referencing (1)
  • EZNMR (2)
  • fatty acids (1)
  • FID (1)
  • FID truncation (1)
  • field dependence (2)
  • field dependent resolution in solids (1)
  • field homogeneity (1)
  • floor vibrations (1)
  • fluoride (1)
  • FM radio station interference (1)
  • forward linear prediction (2)
  • Fourier transforms (3)
  • fruit cake (1)
  • FSLG (1)
  • GARP (3)
  • gas phase NMR (1)
  • gated decoupling (1)
  • ginger (1)
  • gingerbread (1)
  • Glycine (1)
  • gradient calibration (1)
  • gradients (4)
  • H2BC (1)
  • Hahn echo (1)
  • half integer quadrupoles (8)
  • hand cream (1)
  • Hartman-Hahn match (2)
  • heat dissipation (1)
  • helium (1)
  • helium fill (2)
  • helium one-way valve oscillation (1)
  • HETCOR (1)
  • high power 1H decoupling (2)
  • history of NMR (1)
  • HMBC (7)
  • HMQC (10)
  • HMQC vs HSQC (1)
  • HOESY (3)
  • homonuclear decoupling (4)
  • HSQC (11)
  • HSQC-TOCSY (1)
  • improving 2D NMR data (2)
  • INADEQUATE (2)
  • increasing signal-to-noise in MAS spectra (1)
  • index (1)
  • INEPT (2)
  • inverse broadband probe (1)
  • inverse gated decoupling (2)
  • invisible 1H resonances (1)
  • iPad apps (3)
  • iPhone (2)
  • isopropyl groups (1)
  • isotope effect (10)
  • J-Resolved (1)
  • kinetic measurements (1)
  • limonene (2)
  • line broadening (2)
  • line shape simulation (3)
  • line shape specification (2)
  • line shapes (2)
  • linear prediction (4)
  • liquid crystalline samples (1)
  • lock (7)
  • locking on the wrong solvent (1)
  • locking with paramagnetic samples (1)
  • lost signals (1)
  • low-field (1)
  • magnet (2)
  • magnet quench (1)
  • magnetic equivalence (2)
  • magnetic field drift (1)
  • malic acid (1)
  • maple (1)
  • MAS (16)
  • MAS angle setting (2)
  • MAS rotor crash (1)
  • MAS sample size (1)
  • MAS sideband suppression (1)
  • MAS solids NMR vs solution state NMR (1)
  • MAS spinning speed (2)
  • missing or weak signals in DEPT spectra (1)
  • missing signals in HMBC data (1)
  • mixture analysis (4)
  • molecular alignment (1)
  • molecular motion (1)
  • MRI (6)
  • natural gas (1)
  • nitrogen (1)
  • nitrogen fill (2)
  • NMR acronyms (1)
  • NMR music (1)
  • NMR of more than one isotope (1)
  • NMR Technician (1)
  • NMR time scale (1)
  • NMR tubes (3)
  • NOAH (2)
  • NOE (4)
  • NOESY (7)
  • NOESY mixing time (1)
  • NOESY vs ROESY (1)
  • noise (1)
  • non-uniform sampling (1)
  • number of scans to collect (1)
  • NUS (2)
  • Nyquist sampling theorem (6)
  • oxalic acid (1)
  • paramagnetic oxygen (1)
  • paramagnetic shifts (1)
  • paramagnetic susceptibility determination (1)
  • perdeuterated solvents (3)
  • pharmaceutical analysis (1)
  • phase (2)
  • phase correction (3)
  • phase errors (2)
  • phases sensitive COSY (1)
  • phosphate (1)
  • Poor Shimming (1)
  • popcorn (1)
  • presaturation (6)
  • probe (3)
  • probe arcing (1)
  • probe coil (1)
  • probe electronics (1)
  • probe tuning (10)
  • protein (1)
  • PSYCHE (2)
  • pulse calibration (6)
  • pulse power (4)
  • pulse shape (1)
  • pure shift NMR (3)
  • Pure-Shift (2)
  • purge pulse (1)
  • QCPMG (5)
  • quadrature detection (3)
  • quadrature images (1)
  • quadrature spikes (1)
  • quantitative 13C NMR (1)
  • quantitative 1H NMR (1)
  • QUEST (1)
  • radiation damping (2)
  • ramped contact pulses (1)
  • receiver gain (4)
  • Red Blood Cells (1)
  • reference deconvolution (1)
  • relaxation time (5)
  • relaxation time measurement (4)
  • resolution (4)
  • resolution enhancement (2)
  • resolving overlapping signals (1)
  • retrieving empty tube spinners (1)
  • rf field (2)
  • rf homogeneity (1)
  • rhubarb (1)
  • Rod Wasylishen (1)
  • ROESY (1)
  • ROESY vs NOESY (1)
  • rotamer (1)
  • rotational echo (1)
  • rum and egg nog (1)
  • sample depth (1)
  • sample limitation (1)
  • sample mixing (2)
  • sample volume (1)
  • satellite transitions (3)
  • saturation (2)
  • saturation transfer (3)
  • scale of NMR spectrum (1)
  • second order quadrupolar interaction (1)
  • second-order (1)
  • selective excitation (2)
  • shaped pulses (5)
  • shimming (5)
  • shimming without a lock (1)
  • shortbread (1)
  • signal-to-noise (10)
  • signs of coupling constants (2)
  • silica (1)
  • sinc distortion (1)
  • slice selection (1)
  • sodium (1)
  • solid polymorphs (2)
  • solid sample grinding (1)
  • solid state 1H NMR (2)
  • solid state 2H NMR (3)
  • solid state NMR (1)
  • solids NMR in a liquids probe (1)
  • solution vs MAS solids NMR (2)
  • solvent dependent chemical shifts (1)
  • solvent suppression (3)
  • sorbitol (1)
  • sour (1)
  • spectra without pulses (1)
  • spin echoes (3)
  • spin lock (1)
  • spin noise (1)
  • spin pairs (1)
  • spinning (1)
  • spinning liquid samples (2)
  • spruce needles (1)
  • steady state scans (1)
  • sweeping field (1)
  • T1 (4)
  • T1 anisotropy (1)
  • t1 noise removal (4)
  • T1 rho (3)
  • T2 (2)
  • T2* (1)
  • temperature calibration (2)
  • temperature dependent shifts (1)
  • temperature gradient (1)
  • textbook (1)
  • thermal noise (1)
  • throwing away noise (1)
  • TMS (1)
  • TOCSY (3)
  • TOCSY mixing time (1)
  • TOCSY vs COSY (1)
  • toothpaste (1)
  • TRAPDOR (1)
  • TROSY (1)
  • tube thickness (1)
  • Ultra-fast (1)
  • unexpected signals in DEPT spectrum (1)
  • variable temperature (5)
  • video (7)
  • virtual coupling (1)
  • viscosity (1)
  • Vitamin C (2)
  • water suppression (5)
  • watergate (2)
  • weak lock (1)
  • WURST (1)
  • zero filling (2)

Blog Archive

  • ▼  2017 (13)
    • ▼  April (1)
      • HMBC vs. H2BC

Từ khóa » H2bc