HOÁN VỊ, CHỈNH HỢP, TỔ HỢP
Có thể bạn quan tâm
HOÁN VỊ, CHỈNH HỢP, TỔ HỢP
A. LÝ THUYẾT TÓM TẮT
I. Hoán vị
1. Giai thừa
\(n! = 1.2.3...n\). Quy ước: \(0! = 1\)
\(n! = \left( {n - 1} \right)!n\)
\(\frac{{n!}}{{p!}} = \left( {p + 1} \right)\left( {p + 2} \right)....n\) (với \(n > p\))
\(\frac{{n!}}{{\left( {n - p} \right)!}} = \left( {n - p + 1} \right)\left( {n - p + 2} \right)....n\) (với \(n > p\))
2. Hoán vị (không lặp)
Một tập hợp gồm n phần tử \(\left( {n \ge 1} \right)\). Mỗi cách sắp xếp n phần tử này theo một thứ tự nào đó được gọi là một hoán vị của n phần tử.
Số hoán vị của n phần tử là \({P_n} = n!\)
3. Hoán vị lặp
Cho k phần tử khác nhau \({a_1};{a_2};...;{a_k}\) . Mỗi cách sắp xếp n phần tử trong đó gồm n1 phần tử a1; n2 phần tử a2;…; nk phần tử ak \(\left( {{n_1} + {n_2} + ... + {n_k} = n} \right)\) theo một thứ tự nào đó được gọi là một hoán vị lặp cấp n và kiểu \(\left( {{n_1};{n_2};...;{n_k}} \right)\) của k phần tử
Số các hoán vị lặp cấp n kiểu \(\left( {{n_1};{n_2};;;;{n_k}} \right)\) của k phần tử là:
\({P_n}\left( {{n_1};{n_2};...;{n_k}} \right) = \frac{{n!}}{{{n_1}!{n_2}!...{n_k}!}}\)
HƯỚNG DẪN GIẢI
Từ khóa » Công Thức Pn
-
Công Thức Giải Nhanh Phần HOÁN VỊ - CHỈNH HỢP - TỔ HỢP
-
Hoán Vị - Chỉnh Hợp - Tổ Hợp | Kiến Thức Wiki | Fandom
-
[LỜI GIẢI] Công Thức Tính Số Hoán Vị Pn Là - Tự Học 365
-
Hoán Vị - Chỉnh Hợp - Tổ Hợp: Công Thức Và Bài Tập
-
Công Thức Tính Số Hoán Vị (P_n) Là - Hoc247
-
Top 12 Công Thức Pn - Ôn Thi HSG
-
Công Thức Tổ Hợp, Chỉnh Hợp, Hoán Vị Và Các Dạng Bài Tập Chi Tiết Từ A
-
Hoán Vị, Chỉnh Hợp Và Tổ Hợp - Minh Nguyen
-
Công Thức Tổ Hợp, Chỉnh Hợp, Hoán Vị Và Công Thức Nhị Thức Niu Tơn
-
Công Thức Tính Số Hoán Vị, Số Chỉnh Hợp Chập K Của Tập Hợp Có N ...
-
Công Thức đại Số Tổ Hợp - Từ Điển Toán Học