Học đạo Hàm Nâng Cao Cực Dễ Nhờ áp Dụng Công Thức Và ... - Monkey

x

Đăng ký nhận tư vấn về sản phẩm và lộ trình học phù hợp cho con ngay hôm nay!

*Vui lòng kiểm tra lại họ tên *Vui lòng kiểm tra lại SĐT *Vui lòng kiểm tra lại Email Học tiếng Anh cơ bản (0-6 tuổi) Nâng cao 4 kỹ năng tiếng Anh (3-11 tuổi) Học Toán theo chương trình GDPT Học Tiếng Việt theo chương trình GDPT *Bạn chưa chọn mục nào! Đăng Ký Ngay X

ĐĂNG KÝ NHẬN TƯ VẤN THÀNH CÔNG!

Monkey sẽ liên hệ ba mẹ để tư vấn trong thời gian sớm nhất! Hoàn thành X

ĐÃ CÓ LỖI XẢY RA!

Ba mẹ vui lòng thử lại nhé! Hoàn thành X x

Đăng ký nhận bản tin mỗi khi nội dung bài viết này được cập nhật

*Vui lòng kiểm tra lại Email Đăng Ký
  1. Trang chủ
  2. Ba mẹ cần biết
  3. Giáo dục
  4. Kiến thức cơ bản
Công thức đạo hàm nâng cao 11 và tuyệt chiêu giải bài tập cực đỉnh học sinh nên biết Kiến thức cơ bản Công thức đạo hàm nâng cao 11 và tuyệt chiêu giải bài tập cực đỉnh học sinh nên biết Tham vấn bài viết: Hoàng Mỹ Hạnh Hoàng Mỹ Hạnh

Thạc sĩ Ngôn ngữ - Chuyên gia Giáo dục sớm

Tác giả: Hoàng Hà

Ngày cập nhật: 19/05/2022

Nội dung chính

Đạo hàm nâng cao là kiến thức khá khó dành cho học sinh lớp 11 tham gia các kỳ thi học sinh giỏi, kỳ thi cấp tỉnh, quốc gia và thậm chí có trong kỳ thi THPT, đại học. Vậy nên, để giúp học sinh làm tốt bài tập này hãy cùng Monkey tìm hiểu công thức đạo hàm nâng cao và cách giải chi tiết trong bài viết sau đây nhé.

Đạo hàm nâng cao là gì?

Trong chương trình đại số lớp 11, các em sẽ được làm quen và học các kiến thức về đạo hàm nâng cao. Thực chất, đây là một kiến thức nâng cao hơn của các dạng toán đạo hàm cơ bản.

Nếu đạo hàm cơ bản là một hàm số mô tả sự biến thiên của chúng tại một điểm nào đó, cùng với tích phân để tạo thành một phép toán ngược lại thường ở cấp 1.

Còn với đạo hàm nâng cao hay còn gọi là đạo hàm cấp cao, thường thiên về việc tính đạo hàm của một hàm số cấp 2, cấp 3 cho đến cấp n.

Đạo hàm cấp cao là một kiến thức khá khó. (Ảnh: Sưu tầm internet)

Định nghĩa chi tiết:

Giả sử hàm số y = f(x) có đạo hàm f'(x)

Đạo hàm của hàm số f'(x), nếu có, được gọi là đạo hàm cấp hai của hàm số f(x), kí hiệu là y'' hay f''(x).

Đạo hàm của hàm số f''(x), nếu có, được gọi là đạo hàm cấp ba của hàm số f(x), kí hiệu là y''' hay f'''(x).

Tương tự, đạo hàm của đạo hàm cấp (n-1) được gọi là đạo hàm cấp n của hàm số y = f(x), kí hiệu là y(n) hay f(n)(x).

f(n)(x)=[f(n−1)(x)]′, với n thuộc Z và n >= 2

Công thức đạo hàm nâng cao 11 chi tiết

Để có thể giải được các bài toán về đạo hàm cấp cao này, đòi hỏi các em học sinh phải ghi nhớ, học thuộc và nắm vững công thức tính chi tiết sau đây:

Cho hàm số y = f(x) có đạo hàm cấp n-1 kí hiệu f (n-1) (x) (n ∈ N, n ≥ 4).

Nếu f (n-1) (x) có đạo hàm thì đạo hàm của nó được gọi là đạo hàm câp n của y = f(x), y(n) hoặc f(n) (x).

f (n) (x) = [f (n-1)(x)]’

Công thức đạo hàm cấp cao:

  • (x m) (n) = m(m – 1)(m – 2)…(m – n + 1).xm – n (nếu m ≥ n)
  • (x m) (n) = 0 (nếu m ≤ n)
  • (lnx)(n) = (−1)n−1(n−1)! / xn .
  • (ax)(n) = ax.lnna, với a > 0.
  • (sinx)(n) = sin(x+n.π/2).
  • (cosx)(n) = cos(x+n.π/2).
  • (ex)(n)=ex.
  • (1/x)(n)=(−1)n.n!.x−n−1.

Các dạng toán đạo hàm nâng cao và phương pháp giải

Ngoài việc học thuộc và ghi nhớ định nghĩa, công thức khi học đạo hàm nâng cao 11 là chưa đủ. Bên cạnh đó, các em cần phải nhận biết được các dạng bài tập liên quan để có thể biết cách áp dụng công thức nào để tính toán sao cho phù hợp.

Vậy nên, dưới đây là một số dạng toán đạo hàm với kiến thức nâng cao để mọi người có thể tham khảo:

Dạng 1: Tìm số gia

Dạng 2: Tính đạo hàm nâng cao

Dạng 3: Tính đạo hàm của hàm số tại x0

Dạng 4: Đạo hàm của hàm lượng giác nâng cao

Dạng 5: Đạo hàm kép nâng cao

Kiểu 1. Tính đạo hàm của hàm số f(x) bằng f1(x) khi x khác x0 và bằng f2(x) khi x = x0.

Kiểu 2. Tính đạo hàm của hàm số f(x) bằng f1(x) khi x ≥ x0 và bằng f2(x) khi x < x0.

Dạng 6: Giải phương trình đạo hàm nâng cao

Kiểu 1. Sử dụng đạo hàm để tính giới hạn dạng 0/0; vô cùng / vô cùng: Quy tắc LÔPITAN.

Kiểu 2. Sử dụng đạo hàm trong bài toán giải phương trình và bất phương trình.

Kiểu 3. Sử dụng đạo hàm chứng minh đẳng thức.

Ở kiểu đạo hàm nâng cao này sẽ phải ứng dụng những công thức để tiến hành tìm kiếm đạo hàm, rồi mới tiến hành thay vào biểu thức để biến đổi và tìm ra kết quả.

Dạng 7: Phương trình tiếp tuyến của đồ thị

Trong dạng này sẽ chia thành 3 kiểu bài tập thường gặp như:

Kiểu 1. Phương trình tiếp tuyến khi biết tiếp điểm M(x0;y0).

Kiểu 2. Viết phương trình tiếp tuyến khi biết hệ số góc k.

Kiểu 3. Phương trình tiếp tuyến đi qua điểm A(x1;y1).

Bài tập toán đạo hàm nâng cao 11 tự luyện

Với những thông tin trên có thể thấy được các dạng toán khi học đạo hàm cấp cao khá nhiều. Chính vì vậy, để có thể chinh phục được chúng chỉ còn cách là luyện tập và làm bài tập về chúng thường xuyên.

Vậy nên, dưới đây là một số bài tập liên quan tới các dạng toán trên để các em có thể luyện tập thêm nhé:

(Nguồn: Tổng hợp)

Xem thêm: Gợi ý công thức đạo hàm nhanh giúp tính toán nhanh chóng, dễ dàng và chính xác nhất

Kết luận

Trên đây là tổng hợp những kiến thức giúp các em hiểu rõ hơn về đạo hàm nâng cao. Qua đó có thể thấy đây là dạng toán không hề dễ, nên mọi người cần nắm rõ công thức, các dạng toán và luyện tập thường xuyên để chinh phục chúng tốt hơn nhé.

Chia sẻ ngay button-share Chia sẻ

Sao chép liên kết

Thông tin trong bài viết được tổng hợp nhằm mục đích tham khảo và có thể thay đổi mà không cần báo trước. Quý khách vui lòng kiểm tra lại qua các kênh chính thức hoặc liên hệ trực tiếp với đơn vị liên quan để nắm bắt tình hình thực tế.

Bài viết liên quan
  • Lưu huỳnh là gì? Tính chất đặc trưng và những ứng dụng phổ biến nhất
  • Hình thang vuông là gì? Hướng dẫn cách tính diện tích, chu vi chi tiết
  • Nhóm halogen là gì? Vị trí, tính chất, ứng dụng và cách điều chế!
  • Thấu kính hội tụ là gì? Công thức, cách vẽ & bài tập Vật Lý 9
  • Nội dung định luật bảo toàn động lượng và bài tập thực hành có đáp án (Vật Lý 10)
Bạn có đang quan tâm đến việc cho con học Tiếng Anh? Không Giúp bé giỏi Tiếng Anh Sớm Đăng ký ngay tại đây *Vui lòng kiểm tra lại họ tên *Vui lòng kiểm tra lại SĐT *Vui lòng kiểm tra lại Email Đăng ký ngay Nhận các nội dung mới nhất, hữu ích và miễn phí về kiến thức Giáo dục trong email của bạn *Vui lòng kiểm tra lại Email Đăng Ký Các Bài Viết Mới Nhất Áp suất khí quyển là gì? Công thức, ví dụ và bài tập có đáp án Áp suất khí quyển là gì? Công thức, ví dụ và bài tập có đáp án Âm tiết là gì? Định nghĩa chuẩn SGK và ví dụ dễ hiểu nhất Âm tiết là gì? Định nghĩa chuẩn SGK và ví dụ dễ hiểu nhất Cách ôn đề thi thử trạng nguyên tiếng Việt lớp 4 hiệu quả Cách ôn đề thi thử trạng nguyên tiếng Việt lớp 4 hiệu quả [TẢI MIỄN PHÍ] 50+ Bộ đề thi tiếng Anh lớp 1 học kỳ 1 theo SGK có đáp án [TẢI MIỄN PHÍ] 50+ Bộ đề thi tiếng Anh lớp 1 học kỳ 1 theo SGK có đáp án [TẢI MIỄN PHÍ] 50+ Bài tập Thì Hiện Tại Hoàn Thành ALL LEVEL (có đáp án) [TẢI MIỄN PHÍ] 50+ Bài tập Thì Hiện Tại Hoàn Thành ALL LEVEL (có đáp án) Áp suất khí quyển là gì? Công thức, ví dụ và bài tập có đáp án Áp suất khí quyển là gì? Công thức, ví dụ và bài tập có đáp án Âm tiết là gì? Định nghĩa chuẩn SGK và ví dụ dễ hiểu nhất Âm tiết là gì? Định nghĩa chuẩn SGK và ví dụ dễ hiểu nhất Cách ôn đề thi thử trạng nguyên tiếng Việt lớp 4 hiệu quả Cách ôn đề thi thử trạng nguyên tiếng Việt lớp 4 hiệu quả [TẢI MIỄN PHÍ] 50+ Bộ đề thi tiếng Anh lớp 1 học kỳ 1 theo SGK có đáp án [TẢI MIỄN PHÍ] 50+ Bộ đề thi tiếng Anh lớp 1 học kỳ 1 theo SGK có đáp án [TẢI MIỄN PHÍ] 50+ Bài tập Thì Hiện Tại Hoàn Thành ALL LEVEL (có đáp án) [TẢI MIỄN PHÍ] 50+ Bài tập Thì Hiện Tại Hoàn Thành ALL LEVEL (có đáp án)

Đăng ký tư vấn nhận ưu đãi

Monkey Junior

Mới! *Vui lòng kiểm tra lại họ tên *Vui lòng kiểm tra lại SĐT Bạn là phụ huynh hay học sinh ? Học sinh Phụ huynh *Bạn chưa chọn mục nào! Đăng Ký Mua Monkey Junior

Từ khóa » Bảng Công Thức đạo Hàm Cơ Bản Và Nâng Cao