Hydrogen Sulfide - The NIST WebBook

Hydrogen sulfide
  • Formula: H2S
  • Molecular weight: 34.081
  • IUPAC Standard InChI: InChI=1S/H2S/h1H2 Copy InChI version 1.06
  • IUPAC Standard InChIKey: RWSOTUBLDIXVET-UHFFFAOYSA-N Copy
  • CAS Registry Number: 7783-06-4
  • Chemical structure: H2S This structure is also available as a 2d Mol file or as a computed 3d SD file The 3d structure may be viewed using Java or Javascript.
  • Other names: Dihydrogen monosulfide; Dihydrogen sulfide; Hydrosulfuric acid; Stink damp; Sulfur hydride; Sulfureted hydrogen; H2S; Sulfuretted hydrogen; Hydrogen sulphide; Hydrogen sulfide (H2S); Acide sulfhydrique; Hydrogene sulfure; Idrogeno solforato; Rcra waste number U135; Schwefelwasserstoff; Siarkowodor; UN 1053; Zwavelwaterstof; Hepatic gas; Hepatic acid; Hydrogen monosulfide; Sewer gas
  • Permanent link for this species. Use this link for bookmarking this species for future reference.
  • Information on this page:
    • Gas phase thermochemistry data
    • Phase change data
    • Reaction thermochemistry data
    • Henry's Law data
    • Gas phase ion energetics data
    • Ion clustering data
    • IR Spectrum
    • Mass spectrum (electron ionization)
    • Vibrational and/or electronic energy levels
    • References
    • Notes
  • Other data available:
    • Gas Chromatography
    • Fluid Properties
  • Data at other public NIST sites:
    • Microwave spectra (on physics lab web site)
    • Electron-Impact Ionization Cross Sections (on physics web site)
    • Gas Phase Kinetics Database
    • X-ray Photoelectron Spectroscopy Database, version 5.0
  • Options:
    • Switch to calorie-based units

Data at NIST subscription sites:

  • NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
  • NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.

Gas phase thermochemistry data

Go To: Top, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Quantity Value Units Method Reference Comment
ΔfH°gas-20.6 ± 0.5kJ/molReviewCox, Wagman, et al., 1984CODATA Review value
ΔfH°gas-20.50kJ/molReviewChase, 1998Data last reviewed in June, 1977
Quantity Value Units Method Reference Comment
S°gas,1 bar205.81 ± 0.05J/mol*KReviewCox, Wagman, et al., 1984CODATA Review value
S°gas,1 bar205.77J/mol*KReviewChase, 1998Data last reviewed in June, 1977

Gas Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 + E/t2 H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G Cp = heat capacity (J/mol*K) H° = standard enthalpy (kJ/mol) S° = standard entropy (J/mol*K) t = temperature (K) / 1000.

View plot Requires a JavaScript / HTML 5 canvas capable browser.

View table.

Temperature (K) 298. to 1400.1400. to 6000.
A 26.8841251.22136
B 18.678094.147486
C 3.434203-0.643566
D -3.3787020.041621
E 0.135882-10.46385
F -28.91211-55.87606
G 233.3747243.6900
H -20.50202-20.50202
ReferenceChase, 1998Chase, 1998
Comment Data last reviewed in June, 1977 Data last reviewed in June, 1977

Phase change data

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments: TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director AC - William E. Acree, Jr., James S. Chickos

Quantity Value Units Method Reference Comment
Tboil212.87KN/AGoodwin, 1983Uncertainty assigned by TRC = 0.07 K; TRC
Quantity Value Units Method Reference Comment
Tfus190.85KN/ABeckmann and Waentig, 1910Uncertainty assigned by TRC = 1.5 K; TRC
Quantity Value Units Method Reference Comment
Ttriple187.66KN/AGoodwin, 1983Uncertainty assigned by TRC = 0.06 K; TRC
Ttriple187.61KN/AGiauque and Blue, 1936Crystal phase 1 phase; Uncertainty assigned by TRC = 0.03 K; temp. scale for transition tempertures, T0 = 273.10 K Nature of transition C2 - C1 not definitely established; TRC
Quantity Value Units Method Reference Comment
Ptriple0.232barN/AGoodwin, 1983Uncertainty assigned by TRC = 0.005 bar; TRC
Quantity Value Units Method Reference Comment
Tc373.3KN/ACubitt, Henderson, et al., 1987Uncertainty assigned by TRC = 0.37 K; Tc from H.Kopper, 1936-450; TRC
Tc373.4KN/AGoodwin, 1983Uncertainty assigned by TRC = 0.15 K; TRC
Quantity Value Units Method Reference Comment
Pc89.70barN/ACubitt, Henderson, et al., 1987Uncertainty assigned by TRC = 0.18 bar; from VP equation fitted to lit. values of vapour pressure; TRC
Pc89.6291barN/AGoodwin, 1983Uncertainty assigned by TRC = 0.30 bar; TRC
Quantity Value Units Method Reference Comment
ρc10.2mol/lN/AGoodwin, 1983Uncertainty assigned by TRC = 0.1 mol/l; TRC

Enthalpy of vaporization

ΔvapH (kJ/mol) Temperature (K) Reference Comment
19.5200.Dykyj, Svoboda, et al., 1999Based on data from 185. to 228. K.; AC
18.6243.Dykyj, Svoboda, et al., 1999Based on data from 228. to 363. K.; AC
21.9200.Giauque and Blue, 1936, 2Based on data from 187. to 213. K.; AC

Antoine Equation Parameters

log10(P) = A − (B / (T + C)) P = vapor pressure (bar) T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
138.8 to 212.84.43681829.439-25.412Stull, 1947Coefficents calculated by NIST from author's data.
212.8 to 349.54.52887958.587-0.539Stull, 1947Coefficents calculated by NIST from author's data.

Enthalpy of sublimation

ΔsubH (kJ/mol) Temperature (K) Method Reference Comment
22.5135.MGClark, Cockett, et al., 1951Based on data from 128. to 142. K.; AC
25.4175.N/AGiauque and Blue, 1936, 2Based on data from 164. to 187. K.; AC

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:

  • SRD 103a – Thermo Data Engine (TDE) for pure compounds.
  • SRD 103b – Thermo Data Engine (TDE) for pure compounds, binary mixtures and chemical reactions
  • SRSD 2 – Web Thermo Tables (WTT), "lite" edition
  • SRSD 3 – Web Thermo Tables (WTT), professional edition
  • SRD 147 – Ionic Liquids Database
  • SRD 156 – Clathrate Hydrate Physical Property Database

Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments: B - John E. Bartmess M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

HS- + Hydrogen cation = Hydrogen sulfide

By formula: HS- + H+ = H2S

Quantity Value Units Method Reference Comment
ΔrH°1470. ± 3.kJ/molAVGN/AAverage of 6 out of 7 values; Individual data points
Quantity Value Units Method Reference Comment
ΔrG°1441. ± 13.kJ/molH-TSRempala and Ervin, 2000gas phase; B
ΔrG°1443. ± 8.4kJ/molIMREBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B
ΔrG°1443.1 ± 0.42kJ/molH-TSShiell, Hu, et al., 1900gas phase; 0K:350.125±0.009 kcal/mol, corr to 298K from Gurvich, Veyts, et al., With EA( Breyer, Frey, et al., 1981)BDE(0K)=89.97±0.05; B
ΔrG°1446. ± 8.4kJ/molIMRECumming and Kebarle, 1978gas phase; B
ΔrG°1432.2kJ/molN/ACheck, Faust, et al., 2001gas phase; MnO2-(t); ; ΔS(EA)=5.4; B

Fluorine anion + Hydrogen sulfide = (Fluorine anionHydrogen sulfide)

By formula: F- + H2S = (F-H2S)

Bond type: Hydrogen bond (negative ion to hydride)

Quantity Value Units Method Reference Comment
ΔrH°145. ± 8.4kJ/molIMRELarson and McMahon, 1983gas phase; These relative affinities are ca. 10 kcal/mol weaker than threshold values (see Wenthold and Squires, 1995) for donors greater than ca. 27 kcal/mol in free energy. This discrepancy has not yet been resolved, though the stronger value appears preferable.; B,M
Quantity Value Units Method Reference Comment
ΔrS°78.7J/mol*KN/ALarson and McMahon, 1983gas phase; switching reaction(F-)H2O, Entropy change calculated or estimated; Arshadi, Yamdagni, et al., 1970; M
Quantity Value Units Method Reference Comment
ΔrG°121. ± 8.4kJ/molIMRELarson and McMahon, 1983gas phase; These relative affinities are ca. 10 kcal/mol weaker than threshold values (see Wenthold and Squires, 1995) for donors greater than ca. 27 kcal/mol in free energy. This discrepancy has not yet been resolved, though the stronger value appears preferable.; B,M

H3S+ + Hydrogen sulfide = (H3S+Hydrogen sulfide)

By formula: H3S+ + H2S = (H3S+H2S)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
ΔrH°64.4kJ/molPHPMSHiraoka and Kebarle, 1977gas phase; M
ΔrH°45.2kJ/molPIWalters and Blais, 1984gas phase; M
ΔrH°44.4kJ/molPIPrest, Tzeng, et al., 1983gas phase; M
Quantity Value Units Method Reference Comment
ΔrS°102.J/mol*KPHPMSHiraoka and Kebarle, 1977gas phase; M
ΔrS°74.5J/mol*KPHPMSMeot-Ner (Mautner) and Field, 1977gas phase; Entropy change is questionable; M
ΔrS°78.2J/mol*KPHPMSMeot-Ner (Mautner) and Field, 1977gas phase; M

CN- + Hydrogen sulfide = (CN-Hydrogen sulfide)

By formula: CN- + H2S = (CN-H2S)

Quantity Value Units Method Reference Comment
ΔrH°79.1 ± 4.2kJ/molTDEqMeot-ner, 1988gas phase; B
ΔrH°83. ± 15.kJ/molIMRELarson and McMahon, 1987gas phase; B,M
Quantity Value Units Method Reference Comment
ΔrS°99.6J/mol*KN/ALarson and McMahon, 1987gas phase; switching reaction,Thermochemical ladder(CN-)H2O, Entropy change calculated or estimated; Payzant, Yamdagni, et al., 1971; M
Quantity Value Units Method Reference Comment
ΔrG°54.0 ± 4.2kJ/molTDEqMeot-ner, 1988gas phase; B
ΔrG°51.9 ± 9.6kJ/molIMRELarson and McMahon, 1987gas phase; B,M

(H3S+3Hydrogen sulfide) + Hydrogen sulfide = (H3S+4Hydrogen sulfide)

By formula: (H3S+3H2S) + H2S = (H3S+4H2S)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
ΔrH°28.kJ/molPHPMSHiraoka and Kebarle, 1977gas phase; M
ΔrH°10.kJ/molPIWalters and Blais, 1984gas phase; M
ΔrH°14.kJ/molPHPMSMeot-Ner (Mautner) and Field, 1977gas phase; Entropy change is questionable; M
Quantity Value Units Method Reference Comment
ΔrS°103.J/mol*KPHPMSHiraoka and Kebarle, 1977gas phase; M
ΔrS°42.J/mol*KPHPMSMeot-Ner (Mautner) and Field, 1977gas phase; Entropy change is questionable; M

(H3S+2Hydrogen sulfide) + Hydrogen sulfide = (H3S+3Hydrogen sulfide)

By formula: (H3S+2H2S) + H2S = (H3S+3H2S)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
ΔrH°18.kJ/molPIWalters and Blais, 1984gas phase; M
ΔrH°35.kJ/molPHPMSHiraoka and Kebarle, 1977gas phase; M
ΔrH°23.kJ/molPHPMSMeot-Ner (Mautner) and Field, 1977gas phase; Entropy change is questionable; M
Quantity Value Units Method Reference Comment
ΔrS°103.J/mol*KPHPMSHiraoka and Kebarle, 1977gas phase; M
ΔrS°59.J/mol*KPHPMSMeot-Ner (Mautner) and Field, 1977gas phase; Entropy change is questionable; M

(H3S+Hydrogen sulfide) + Water = (H3S+WaterHydrogen sulfide)

By formula: (H3S+H2S) + H2O = (H3S+H2OH2S)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
ΔrH°79.9kJ/molPHPMSHiraoka and Kebarle, 1977gas phase; From thermochemical cycle,switching reaction(H3S+ H2O)H2O; Cunningham, Payzant, et al., 1972, Lias, Liebman, et al., 1984; M
Quantity Value Units Method Reference Comment
ΔrS°91.2J/mol*KPHPMSHiraoka and Kebarle, 1977gas phase; From thermochemical cycle,switching reaction(H3S+ H2O)H2O; Cunningham, Payzant, et al., 1972, Lias, Liebman, et al., 1984; M

(H3S+Hydrogen sulfide) + Hydrogen sulfide = (H3S+2Hydrogen sulfide)

By formula: (H3S+H2S) + H2S = (H3S+2H2S)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
ΔrH°38.kJ/molPHPMSHiraoka and Kebarle, 1977gas phase; M
ΔrH°25.kJ/molPIWalters and Blais, 1984gas phase; M
ΔrH°30.kJ/molPHPMSMeot-Ner (Mautner) and Field, 1977gas phase; M
Quantity Value Units Method Reference Comment
ΔrS°87.4J/mol*KPHPMSHiraoka and Kebarle, 1977gas phase; M
ΔrS°72.4J/mol*KPHPMSMeot-Ner (Mautner) and Field, 1977gas phase; M

(H3S+4Hydrogen sulfide) + Hydrogen sulfide = (H3S+5Hydrogen sulfide)

By formula: (H3S+4H2S) + H2S = (H3S+5H2S)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
ΔrH°26.kJ/molPHPMSHiraoka and Kebarle, 1977gas phase; M
Quantity Value Units Method Reference Comment
ΔrS°100.J/mol*KPHPMSHiraoka and Kebarle, 1977gas phase; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
7.1185.PHPMSHiraoka and Kebarle, 1977gas phase; M

CH6N+ + Hydrogen sulfide = (CH6N+Hydrogen sulfide)

By formula: CH6N+ + H2S = (CH6N+H2S)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
ΔrH°45.2kJ/molPHPMSMeot-Ner (Mautner) and Sieck, 1985gas phase; M
Quantity Value Units Method Reference Comment
ΔrS°84.J/mol*KPHPMSMeot-Ner (Mautner) and Sieck, 1985gas phase; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
23.270.PHPMSMeot-Ner (Mautner) and Sieck, 1985gas phase; M

HS- + Hydrogen sulfide = (HS-Hydrogen sulfide)

By formula: HS- + H2S = (HS-H2S)

Quantity Value Units Method Reference Comment
ΔrH°55.2 ± 4.2kJ/molTDAsMeot-ner, 1988gas phase; B,M
Quantity Value Units Method Reference Comment
ΔrS°82.4J/mol*KPHPMSMeot-ner, 1988gas phase; M
Quantity Value Units Method Reference Comment
ΔrG°31. ± 4.2kJ/molTDAsMeot-ner, 1988gas phase; B

NH4+ + Hydrogen sulfide = (NH4+Hydrogen sulfide)

By formula: H4N+ + H2S = (H4N+H2S)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
ΔrH°47.7kJ/molPHPMSMeot-Ner (Mautner) and Sieck, 1985gas phase; M
Quantity Value Units Method Reference Comment
ΔrS°69.9J/mol*KPHPMSMeot-Ner (Mautner) and Sieck, 1985gas phase; M

C3H7+ + Hydrogen sulfide = (C3H7+Hydrogen sulfide)

By formula: C3H7+ + H2S = (C3H7+H2S)

Quantity Value Units Method Reference Comment
ΔrH°134.kJ/molPHPMSMeot-Ner (Mautner) and Sieck, 1991gas phase; condensation; M
Quantity Value Units Method Reference Comment
ΔrS°146.J/mol*KPHPMSMeot-Ner (Mautner) and Sieck, 1991gas phase; condensation; M

Carbonyl sulfide + Water = Carbon dioxide + Hydrogen sulfide

By formula: COS + H2O = CO2 + H2S

Quantity Value Units Method Reference Comment
ΔrH°-33.4 ± 0.96kJ/molEqkTerres and Wesemann, 1932gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -35.66 kJ/mol; ALS

(H2S+Hydrogen sulfide) + Hydrogen sulfide = (H2S+2Hydrogen sulfide)

By formula: (H2S+H2S) + H2S = (H2S+2H2S)

Quantity Value Units Method Reference Comment
ΔrH°18.kJ/molPIPrest, Tzeng, et al., 1983gas phase; M
ΔrH°13.kJ/molPIWalters and Blais, 1981gas phase; M

Iodide + Hydrogen sulfide = (IodideHydrogen sulfide)

By formula: I- + H2S = (I-H2S)

Bond type: Hydrogen bond (negative ion to hydride)

Quantity Value Units Method Reference Comment
ΔrH°37. ± 4.2kJ/molTDAsCaldwell, Masucci, et al., 1989gas phase; B,M

H2S+ + Hydrogen sulfide = (H2S+Hydrogen sulfide)

By formula: H2S+ + H2S = (H2S+H2S)

Quantity Value Units Method Reference Comment
ΔrH°88.7kJ/molPIPrest, Tzeng, et al., 1983gas phase; M
ΔrH°71.1kJ/molPIWalters and Blais, 1981gas phase; M

Thioacetic acid + Water = Acetic acid + Hydrogen sulfide

By formula: C2H4OS + H2O = C2H4O2 + H2S

Quantity Value Units Method Reference Comment
ΔrH°-2.7 ± 0.3kJ/molCmSunner and Wadso, 1957liquid phase; Heat of hydrolysis; ALS

F5S- + Hydrogen sulfide = (F5S-Hydrogen sulfide)

By formula: F5S- + H2S = (F5S-H2S)

Quantity Value Units Method Reference Comment
ΔrH°212. ± 48.kJ/molSIFTZangerle, Hansel, et al., 1993gas phase; CID with Ar; M

(H2S+2Hydrogen sulfide) + Hydrogen sulfide = (H2S+3Hydrogen sulfide)

By formula: (H2S+2H2S) + H2S = (H2S+3H2S)

Quantity Value Units Method Reference Comment
ΔrH°5.0kJ/molPIWalters and Blais, 1981gas phase; M

(H2S+3Hydrogen sulfide) + Hydrogen sulfide = (H2S+4Hydrogen sulfide)

By formula: (H2S+3H2S) + H2S = (H2S+4H2S)

Quantity Value Units Method Reference Comment
ΔrH°5.9kJ/molPIWalters and Blais, 1981gas phase; M

(H2S+4Hydrogen sulfide) + Hydrogen sulfide = (H2S+5Hydrogen sulfide)

By formula: (H2S+4H2S) + H2S = (H2S+5H2S)

Quantity Value Units Method Reference Comment
ΔrH°11.kJ/molPIWalters and Blais, 1981gas phase; M

trithiocarbonic acid = Carbon disulfide + Hydrogen sulfide

By formula: CH2S3 = CS2 + H2S

Quantity Value Units Method Reference Comment
ΔrH°44. ± 1.kJ/molCmGattow and Krebes, 1963liquid phase; ALS

Nitric oxide anion + Hydrogen sulfide = H2NOS-

By formula: NO- + H2S = H2NOS-

Quantity Value Units Method Reference Comment
ΔrH°23.4kJ/molN/AHendricks, de Clercq, et al., 2002gas phase; B

Henry's Law data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Rolf Sander

Henry's Law constant (water solution)

kH(T) = k°H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K))) k°H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar)) d(ln(kH))/d(1/T) = Temperature dependence constant (K)

k°H (mol/(kg*bar)) d(ln(kH))/d(1/T) (K) Method Reference Comment
0.0872100.MN/A
0.102000.LN/A
0.102300.QN/AOnly the tabulated data between T = 273. K and T = 303. K from missing citation was used to derive kH and -Δ kH/R. Above T = 303. K the tabulated data could not be parameterized by equation (reference missing) very well. The partial pressure of water vapor (needed to convert some Henry's law constants) was calculated using the formula given by missing citation. The quantities A and α from missing citation were assumed to be identical.
0.102200.LN/A
0.0972200.XN/A
0.102100.LN/A
0.102100.LN/A
0.10RN/A
0.00102300.XN/AThe value is taken from the compilation of solubilities by W. Asman (unpublished).

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments: HL - Edward P. Hunter and Sharon G. Lias L - Sharon G. Lias

Data compiled as indicated in comments: B - John E. Bartmess LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

View reactions leading to H2S+ (ion structure unspecified)

Quantity Value Units Method Reference Comment
IE (evaluated)10.457 ± 0.012eVN/AN/AL
Quantity Value Units Method Reference Comment
Proton affinity (review)705.kJ/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Gas basicity673.8kJ/molN/AHunter and Lias, 1998HL

Ionization energy determinations

IE (eV) Method Reference Comment
10.453 ± 0.008PIWalters and Blais, 1984LBLHLM
10.4607 ± 0.0026PIPrest, Tzeng, et al., 1983, 2LBLHLM
10.449 ± 0.006PIWalters and Blais, 1981LLK
10. ± 4.ENDSmith, Adams, et al., 1981LLK
10.48PEKimura, Katsumata, et al., 1981LLK
10.466 ± 0.002SKarlsson, Mattsson, et al., 1976LLK
10.56 ± 0.05EIBalkis, Gaines, et al., 1976LLK
10.5PIRabalais, Debies, et al., 1974LLK
10.43PENatalis, 1973LLK
10.45EIMorrison and Traeger, 1973LLK
10.47PEPotts and Price, 1972LLK
10.43PEDelwiche and Natalis, 1970RDSH
12.76PEDelwiche and Natalis, 1970RDSH
14.91PEDelwiche and Natalis, 1970RDSH
20.8PEDelwiche and Natalis, 1970RDSH
18.0PEDelwiche and Natalis, 1970RDSH
12.81PEDelwiche, Natalis, et al., 1970RDSH
14.79PEDelwiche, Natalis, et al., 1970RDSH
10.43 ± 0.01PIDibeler and Liston, 1968RDSH
10.42PEAl-Joboury and Turner, 1964RDSH
12.62PEAl-Joboury and Turner, 1964RDSH
14.82PEAl-Joboury and Turner, 1964RDSH
18.00PEAl-Joboury and Turner, 1964RDSH
20.12PEAl-Joboury and Turner, 1964RDSH
10.45 ± 0.03EIFrost and McDowell, 1958RDSH
10.46 ± 0.01PIWatanabe, 1954RDSH
10.47 ± 0.01SPrice, 1935RDSH
10.5PEBieri, Asbrink, et al., 1982Vertical value; LBLHLM
10.43PEWagner and Bock, 1974Vertical value; LLK
10.47PESchweig and Thiel, 1974Vertical value; LLK
10.48PEBock, Wagner, et al., 1972Vertical value; LLK

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
HS+14.300 ± 0.024HPIPrest, Tzeng, et al., 1983, 2LBLHLM
HS+14.7 ± 0.2HEIBalkis, Gaines, et al., 1976LLK
HS+14.4HEIMorrison and Traeger, 1973LLK
HS+14.27 ± 0.02HPIDibeler and Liston, 1968RDSH
HS+14.4 ± 0.1HEIPalmer and Lossing, 1962RDSH
S+13.375 ± 0.022H2PIPrest, Tzeng, et al., 1983, 2LBLHLM
S+13.41H2PIPECOEland, 1979LLK
S+13.5H2EIMorrison and Traeger, 1973LLK
S+13.36 ± 0.01H2PIDibeler and Liston, 1968RDSH
S+13.40 ± 0.01H2PIDibeler and Liston, 1968RDSH

De-protonation reactions

HS- + Hydrogen cation = Hydrogen sulfide

By formula: HS- + H+ = H2S

Quantity Value Units Method Reference Comment
ΔrH°1470. ± 3.kJ/molAVGN/AAverage of 6 out of 7 values; Individual data points
Quantity Value Units Method Reference Comment
ΔrG°1441. ± 13.kJ/molH-TSRempala and Ervin, 2000gas phase; B
ΔrG°1443. ± 8.4kJ/molIMREBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B
ΔrG°1443.1 ± 0.42kJ/molH-TSShiell, Hu, et al., 1900gas phase; 0K:350.125±0.009 kcal/mol, corr to 298K from Gurvich, Veyts, et al., With EA( Breyer, Frey, et al., 1981)BDE(0K)=89.97±0.05; B
ΔrG°1446. ± 8.4kJ/molIMRECumming and Kebarle, 1978gas phase; B
ΔrG°1432.2kJ/molN/ACheck, Faust, et al., 2001gas phase; MnO2-(t); ; ΔS(EA)=5.4; B

Ion clustering data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments: M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias B - John E. Bartmess

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.

Clustering reactions

CH6N+ + Hydrogen sulfide = (CH6N+Hydrogen sulfide)

By formula: CH6N+ + H2S = (CH6N+H2S)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
ΔrH°45.2kJ/molPHPMSMeot-Ner (Mautner) and Sieck, 1985gas phase; M
Quantity Value Units Method Reference Comment
ΔrS°84.J/mol*KPHPMSMeot-Ner (Mautner) and Sieck, 1985gas phase; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
23.270.PHPMSMeot-Ner (Mautner) and Sieck, 1985gas phase; M

CN- + Hydrogen sulfide = (CN-Hydrogen sulfide)

By formula: CN- + H2S = (CN-H2S)

Quantity Value Units Method Reference Comment
ΔrH°79.1 ± 4.2kJ/molTDEqMeot-ner, 1988gas phase; B
ΔrH°83. ± 15.kJ/molIMRELarson and McMahon, 1987gas phase; B,M
Quantity Value Units Method Reference Comment
ΔrS°99.6J/mol*KN/ALarson and McMahon, 1987gas phase; switching reaction,Thermochemical ladder(CN-)H2O, Entropy change calculated or estimated; Payzant, Yamdagni, et al., 1971; M
Quantity Value Units Method Reference Comment
ΔrG°54.0 ± 4.2kJ/molTDEqMeot-ner, 1988gas phase; B
ΔrG°51.9 ± 9.6kJ/molIMRELarson and McMahon, 1987gas phase; B,M

C3H7+ + Hydrogen sulfide = (C3H7+Hydrogen sulfide)

By formula: C3H7+ + H2S = (C3H7+H2S)

Quantity Value Units Method Reference Comment
ΔrH°134.kJ/molPHPMSMeot-Ner (Mautner) and Sieck, 1991gas phase; condensation; M
Quantity Value Units Method Reference Comment
ΔrS°146.J/mol*KPHPMSMeot-Ner (Mautner) and Sieck, 1991gas phase; condensation; M

Fluorine anion + Hydrogen sulfide = (Fluorine anionHydrogen sulfide)

By formula: F- + H2S = (F-H2S)

Bond type: Hydrogen bond (negative ion to hydride)

Quantity Value Units Method Reference Comment
ΔrH°145. ± 8.4kJ/molIMRELarson and McMahon, 1983gas phase; These relative affinities are ca. 10 kcal/mol weaker than threshold values (see Wenthold and Squires, 1995) for donors greater than ca. 27 kcal/mol in free energy. This discrepancy has not yet been resolved, though the stronger value appears preferable.; B,M
Quantity Value Units Method Reference Comment
ΔrS°78.7J/mol*KN/ALarson and McMahon, 1983gas phase; switching reaction(F-)H2O, Entropy change calculated or estimated; Arshadi, Yamdagni, et al., 1970; M
Quantity Value Units Method Reference Comment
ΔrG°121. ± 8.4kJ/molIMRELarson and McMahon, 1983gas phase; These relative affinities are ca. 10 kcal/mol weaker than threshold values (see Wenthold and Squires, 1995) for donors greater than ca. 27 kcal/mol in free energy. This discrepancy has not yet been resolved, though the stronger value appears preferable.; B,M

F5S- + Hydrogen sulfide = (F5S-Hydrogen sulfide)

By formula: F5S- + H2S = (F5S-H2S)

Quantity Value Units Method Reference Comment
ΔrH°212. ± 48.kJ/molSIFTZangerle, Hansel, et al., 1993gas phase; CID with Ar; M

HS- + Hydrogen sulfide = (HS-Hydrogen sulfide)

By formula: HS- + H2S = (HS-H2S)

Quantity Value Units Method Reference Comment
ΔrH°55.2 ± 4.2kJ/molTDAsMeot-ner, 1988gas phase; B,M
Quantity Value Units Method Reference Comment
ΔrS°82.4J/mol*KPHPMSMeot-ner, 1988gas phase; M
Quantity Value Units Method Reference Comment
ΔrG°31. ± 4.2kJ/molTDAsMeot-ner, 1988gas phase; B

H2S+ + Hydrogen sulfide = (H2S+Hydrogen sulfide)

By formula: H2S+ + H2S = (H2S+H2S)

Quantity Value Units Method Reference Comment
ΔrH°88.7kJ/molPIPrest, Tzeng, et al., 1983gas phase; M
ΔrH°71.1kJ/molPIWalters and Blais, 1981gas phase; M

(H2S+Hydrogen sulfide) + Hydrogen sulfide = (H2S+2Hydrogen sulfide)

By formula: (H2S+H2S) + H2S = (H2S+2H2S)

Quantity Value Units Method Reference Comment
ΔrH°18.kJ/molPIPrest, Tzeng, et al., 1983gas phase; M
ΔrH°13.kJ/molPIWalters and Blais, 1981gas phase; M

(H2S+2Hydrogen sulfide) + Hydrogen sulfide = (H2S+3Hydrogen sulfide)

By formula: (H2S+2H2S) + H2S = (H2S+3H2S)

Quantity Value Units Method Reference Comment
ΔrH°5.0kJ/molPIWalters and Blais, 1981gas phase; M

(H2S+3Hydrogen sulfide) + Hydrogen sulfide = (H2S+4Hydrogen sulfide)

By formula: (H2S+3H2S) + H2S = (H2S+4H2S)

Quantity Value Units Method Reference Comment
ΔrH°5.9kJ/molPIWalters and Blais, 1981gas phase; M

(H2S+4Hydrogen sulfide) + Hydrogen sulfide = (H2S+5Hydrogen sulfide)

By formula: (H2S+4H2S) + H2S = (H2S+5H2S)

Quantity Value Units Method Reference Comment
ΔrH°11.kJ/molPIWalters and Blais, 1981gas phase; M

H3S+ + Hydrogen sulfide = (H3S+Hydrogen sulfide)

By formula: H3S+ + H2S = (H3S+H2S)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
ΔrH°64.4kJ/molPHPMSHiraoka and Kebarle, 1977gas phase; M
ΔrH°45.2kJ/molPIWalters and Blais, 1984gas phase; M
ΔrH°44.4kJ/molPIPrest, Tzeng, et al., 1983gas phase; M
Quantity Value Units Method Reference Comment
ΔrS°102.J/mol*KPHPMSHiraoka and Kebarle, 1977gas phase; M
ΔrS°74.5J/mol*KPHPMSMeot-Ner (Mautner) and Field, 1977gas phase; Entropy change is questionable; M
ΔrS°78.2J/mol*KPHPMSMeot-Ner (Mautner) and Field, 1977gas phase; M

(H3S+Hydrogen sulfide) + Hydrogen sulfide = (H3S+2Hydrogen sulfide)

By formula: (H3S+H2S) + H2S = (H3S+2H2S)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
ΔrH°38.kJ/molPHPMSHiraoka and Kebarle, 1977gas phase; M
ΔrH°25.kJ/molPIWalters and Blais, 1984gas phase; M
ΔrH°30.kJ/molPHPMSMeot-Ner (Mautner) and Field, 1977gas phase; M
Quantity Value Units Method Reference Comment
ΔrS°87.4J/mol*KPHPMSHiraoka and Kebarle, 1977gas phase; M
ΔrS°72.4J/mol*KPHPMSMeot-Ner (Mautner) and Field, 1977gas phase; M

(H3S+2Hydrogen sulfide) + Hydrogen sulfide = (H3S+3Hydrogen sulfide)

By formula: (H3S+2H2S) + H2S = (H3S+3H2S)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
ΔrH°18.kJ/molPIWalters and Blais, 1984gas phase; M
ΔrH°35.kJ/molPHPMSHiraoka and Kebarle, 1977gas phase; M
ΔrH°23.kJ/molPHPMSMeot-Ner (Mautner) and Field, 1977gas phase; Entropy change is questionable; M
Quantity Value Units Method Reference Comment
ΔrS°103.J/mol*KPHPMSHiraoka and Kebarle, 1977gas phase; M
ΔrS°59.J/mol*KPHPMSMeot-Ner (Mautner) and Field, 1977gas phase; Entropy change is questionable; M

(H3S+3Hydrogen sulfide) + Hydrogen sulfide = (H3S+4Hydrogen sulfide)

By formula: (H3S+3H2S) + H2S = (H3S+4H2S)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
ΔrH°28.kJ/molPHPMSHiraoka and Kebarle, 1977gas phase; M
ΔrH°10.kJ/molPIWalters and Blais, 1984gas phase; M
ΔrH°14.kJ/molPHPMSMeot-Ner (Mautner) and Field, 1977gas phase; Entropy change is questionable; M
Quantity Value Units Method Reference Comment
ΔrS°103.J/mol*KPHPMSHiraoka and Kebarle, 1977gas phase; M
ΔrS°42.J/mol*KPHPMSMeot-Ner (Mautner) and Field, 1977gas phase; Entropy change is questionable; M

(H3S+4Hydrogen sulfide) + Hydrogen sulfide = (H3S+5Hydrogen sulfide)

By formula: (H3S+4H2S) + H2S = (H3S+5H2S)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
ΔrH°26.kJ/molPHPMSHiraoka and Kebarle, 1977gas phase; M
Quantity Value Units Method Reference Comment
ΔrS°100.J/mol*KPHPMSHiraoka and Kebarle, 1977gas phase; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
7.1185.PHPMSHiraoka and Kebarle, 1977gas phase; M

NH4+ + Hydrogen sulfide = (NH4+Hydrogen sulfide)

By formula: H4N+ + H2S = (H4N+H2S)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
ΔrH°47.7kJ/molPHPMSMeot-Ner (Mautner) and Sieck, 1985gas phase; M
Quantity Value Units Method Reference Comment
ΔrS°69.9J/mol*KPHPMSMeot-Ner (Mautner) and Sieck, 1985gas phase; M

Iodide + Hydrogen sulfide = (IodideHydrogen sulfide)

By formula: I- + H2S = (I-H2S)

Bond type: Hydrogen bond (negative ion to hydride)

Quantity Value Units Method Reference Comment
ΔrH°37. ± 4.2kJ/molTDAsCaldwell, Masucci, et al., 1989gas phase; B,M

Nitric oxide anion + Hydrogen sulfide = H2NOS-

By formula: NO- + H2S = H2NOS-

Quantity Value Units Method Reference Comment
ΔrH°23.4kJ/molN/AHendricks, de Clercq, et al., 2002gas phase; B

IR Spectrum

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Coblentz Society, Inc.

Gas Phase Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

IR spectrum For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom
  • Plot
  • Help / Software credits

Help

The interactive spectrum display requires a browser with JavaScript and HTML 5 canvas support.

Select a region with data to zoom. Select a region with no data or click the mouse on the plot to revert to the orginal display.

Credits

The following components were used in generating the plot:

  • jQuery
  • jQuery UI
  • Flot
  • Plugins for Flot:
    • Resize (distributed with Flot)
    • Selection (distributed with Flot)
    • Axis labels
    • Labels ( Modified by NIST for use in this application)

Additonal code used was developed at NIST: jcamp-dx.js and jcamp-plot.js.

Use or mention of technologies or programs in this web site is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that these items are necessarily the best available for the purpose.

Notice: Except where noted, spectra from this collection were measured on dispersive instruments, often in carefully selected solvents, and hence may differ in detail from measurements on FTIR instruments or in other chemical environments. More information on the manner in which spectra in this collection were collected can be found here.

Notice: Concentration information is not available for this spectrum and, therefore, molar absorptivity values cannot be derived.

Additional Data

View scan of original (hardcopy) spectrum.

View image of digitized spectrum (can be printed in landscape orientation).

View spectrum image in SVG format.

Download spectrum in JCAMP-DX format.

Owner COBLENTZ SOCIETY Collection (C) 2018 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved.
Origin DOW CHEMICAL COMPANY
Source reference COBLENTZ NO. 8759
Date 1964
State GAS (600 mmHg DILUTED TO A TOTAL PRESSURE OF 600 mmHg WITH N2)
Instrument DOW KBr FOREPRISM
Instrument parameters GRATING CHANGED AT 5.0, 7.5, 15.0 MICRON
Path length 12.5 CM
Resolution 4
Sampling procedure TRANSMISSION
Data processing DIGITIZED BY NIST FROM HARD COPY (FROM TWO SEGMENTS)

This IR spectrum is from the Coblentz Society's evaluated infrared reference spectra collection.

Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom
  • Plot
  • Help / Software credits

Help

The interactive spectrum display requires a browser with JavaScript and HTML 5 canvas support.

Select a region with data to zoom. Select a region with no data or click the mouse on the plot to revert to the orginal display.

Credits

The following components were used in generating the plot:

  • jQuery
  • jQuery UI
  • Flot
  • Plugins for Flot:
    • Resize (distributed with Flot)
    • Selection (distributed with Flot)
    • Axis labels
    • Labels ( Modified by NIST for use in this application)

Additonal code used was developed at NIST: jcamp-dx.js and jcamp-plot.js.

Use or mention of technologies or programs in this web site is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that these items are necessarily the best available for the purpose.

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center Collection (C) 2014 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved.
NIST MS number 43

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.

Vibrational and/or electronic energy levels

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Takehiko Shimanouchi

Symmetry: C2ν Symmetry Number σ = 2

Sym. No Approximate Selected Freq. Infrared Raman Comments
Species type of mode Value Rating Value Phase Value Phase
a1 1 Sym str 2615 A 2614.6 gas
a1 2 Bend 1183 A 1182.7 gas
b1 3 Anti str 2626 B 2626 gas

Source: Shimanouchi, 1972

Notes

A0~1 cm-1 uncertainty
B1~3 cm-1 uncertainty

References

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Cox, Wagman, et al., 1984 Cox, J.D.; Wagman, D.D.; Medvedev, V.A., CODATA Key Values for Thermodynamics, Hemisphere Publishing Corp., New York, 1984, 1. [all data]

Chase, 1998 Chase, M.W., Jr., NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]

Goodwin, 1983 Goodwin, R.D., Hydrogen sulfide provisional thermophysical properties from 188 to 700K at pressures to 75 MPa, Report, NBSIR-83-1694; NTIS No. PB84-122704, 177 pp., 1983. [all data]

Beckmann and Waentig, 1910 Beckmann, E.; Waentig, P., Cryoscopic Measurements at Low Temperatures, Z. Anorg. Chem., 1910, 67, 17. [all data]

Giauque and Blue, 1936 Giauque, W.F.; Blue, R.W., Hydrogen Sulfide. The Heat Capacity and Vapor Pressure of Solid and Liquid. The HEat of Vaporization. A Comparison of Thermooodynamic and Spectroscopic Values of the Entropy, J. Am. Chem. Soc., 1936, 58, 831. [all data]

Cubitt, Henderson, et al., 1987 Cubitt, A.G.; Henderson, C.; Staveley, L.A.K.; Fonseca, I.M.A.; Ferreira, A.G.M., Some thermodynamic properties of liquid hydrogen sulphide and deuterium sulphide, J. Chem. Thermodyn., 1987, 19, 703. [all data]

Dykyj, Svoboda, et al., 1999 Dykyj, J.; Svoboda, J.; Wilhoit, R.C.; Frenkel, M.L.; Hall, K.R., Vapor Pressure of Chemicals: Part A. Vapor Pressure and Antoine Constants for Hydrocarbons and Sulfur, Selenium, Tellurium and Hydrogen Containing Organic Compounds, Springer, Berlin, 1999, 373. [all data]

Giauque and Blue, 1936, 2 Giauque, W.F.; Blue, R.W., Hydrogen Sulfide. The Heat Capacity and Vapor Pressure of Solid and Liquid. The Heat of Vaporization. A Comparison of Thermodynamic and Spectroscopic Values of the Entropy, J. Am. Chem. Soc., 1936, 58, 5, 831-837, https://doi.org/10.1021/ja01296a045 . [all data]

Stull, 1947 Stull, Daniel R., Vapor Pressure of Pure Substances. Organic and Inorganic Compounds, Ind. Eng. Chem., 1947, 39, 4, 517-540, https://doi.org/10.1021/ie50448a022 . [all data]

Clark, Cockett, et al., 1951 Clark, A.M.; Cockett, A.H.; Eisner, H.S., The Vapour Pressure of Hydrogen Sulphide, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1951, 209, 1098, 408-415, https://doi.org/10.1098/rspa.1951.0214 . [all data]

Rempala and Ervin, 2000 Rempala, K.; Ervin, K.M., Collisional activation of the Endoergic Hydrogen Atom Transfer Reaction S-(2P) + H2 - SH- + H, J. Chem. Phys., 2000, 112, 10, 4579, https://doi.org/10.1063/1.481016 . [all data]

Bartmess, Scott, et al., 1979 Bartmess, J.E.; Scott, J.A.; McIver, R.T., Jr., The gas phase acidity scale from methanol to phenol, J. Am. Chem. Soc., 1979, 101, 6047. [all data]

Shiell, Hu, et al., 1900 Shiell, R.C.; Hu, X.K.; Hu, Q.J.; Hepburn, J.W., A determination of the bond dissociation energy (D-0(H-SH)): Threshold ion-pair production spectroscopy (TIPPS) of a triatomic molecule, J. Phys. Chem. A, 1900, 104, 19, 4339-4342, https://doi.org/10.1021/jp000025k . [all data]

Gurvich, Veyts, et al. Gurvich, L.V.; Veyts, I.V.; Alcock, C.B., Hemisphere Publishing, NY, 1989, V. 1 2, Thermodynamic Properties of Individual Substances, 4th Ed. [all data]

Breyer, Frey, et al., 1981 Breyer, F.; Frey, P.; Hotop, H., High Resolution Photoelectron Spectrometry of Negative Ions: Rotational Transitions in Laser-Photodetachment of OH-, SH-, and SD-, Z. Phys. A, 1981, 300, 1, 7, https://doi.org/10.1007/BF01412609 . [all data]

Cumming and Kebarle, 1978 Cumming, J.B.; Kebarle, P., Summary of gas phase measurements involving acids AH. Entropy changes in proton transfer reactions involving negative ions. Bond dissociation energies D(A-H) and electron affinities EA(A), Can. J. Chem., 1978, 56, 1. [all data]

Check, Faust, et al., 2001 Check, C.E.; Faust, T.O.; Bailey, J.M.; Wright, B.J.; Gilbert, T.M.; Sunderlin, L.S., Addition of Polarization and Diffuse Functions to the LANL2DZ Basis Set for P-Block Elements, J. Phys. Chem. A,, 2001, 105, 34, 8111, https://doi.org/10.1021/jp011945l . [all data]

Larson and McMahon, 1983 Larson, J.W.; McMahon, T.B., Strong hydrogen bonding in gas-phase anions. An ion cyclotron resonance determination of fluoride binding energetics to bronsted acids from gas-phase fluoride exchange equilibria measurements, J. Am. Chem. Soc., 1983, 105, 2944. [all data]

Wenthold and Squires, 1995 Wenthold, P.G.; Squires, R.R., Bond dissociation energies of F2(-) and HF2(-). A gas-phase experimental and G2 theoretical study, J. Phys. Chem., 1995, 99, 7, 2002, https://doi.org/10.1021/j100007a034 . [all data]

Arshadi, Yamdagni, et al., 1970 Arshadi, M.; Yamdagni, R.; Kebarle, P., Hydration of Halide Negative Ions in the Gas Phase. II. Comparison of Hydration Energies for the Alkali Positive and Halide Negative Ions, J. Phys. Chem., 1970, 74, 7, 1475, https://doi.org/10.1021/j100702a014 . [all data]

Hiraoka and Kebarle, 1977 Hiraoka, K.; Kebarle, P., Gas Phase Ion Equilibria Studies of the Proton in Hydrogen Sulfide and Hydrogen Sulfide - Water Mixtures. Stabilities of the Hydrogen Bonded Complexes H+(H2S)x(H2O)y, Can. J. Chem., 1977, 55, 1, 24, https://doi.org/10.1139/v77-005 . [all data]

Walters and Blais, 1984 Walters, E.A.; Blais, N.C., Molecular beam photoionization and fragmentation of D2S, (H2S)2, (D2S)2, and H2S.H2O, J. Chem. Phys., 1984, 80, 3501. [all data]

Prest, Tzeng, et al., 1983 Prest, H.F.; Tzeng, W.-B.; Brom, J.M., Jr.; Ng, C.Y., Photoionization study of (H2S)2 and (H2S)3, J. Am. Chem. Soc., 1983, 105, 7531. [all data]

Meot-Ner (Mautner) and Field, 1977 Meot-Ner (Mautner), M.; Field, F.H., Stability, Association and Dissociation in the Cluster Ions H3S+.nH2S, H3O+.nH2O and H3O+.H2O, J. Am. Chem. Soc., 1977, 99, 4, 998, https://doi.org/10.1021/ja00446a004 . [all data]

Meot-ner, 1988 Meot-ner, M., Ionic Hydrogen Bond and Ion Solvation. 6. Interaction Energies of the Acetate Ion with Organic Molecules. Comparison of CH3COO- with Cl-, CN-, and SH-, J. Am. Chem. Soc., 1988, 110, 12, 3854, https://doi.org/10.1021/ja00220a022 . [all data]

Larson and McMahon, 1987 Larson, J.W.; McMahon, T.B., Hydrogen bonding in gas phase anions. The energetics of interaction between cyanide ion and bronsted acids, J. Am. Chem. Soc., 1987, 109, 6230. [all data]

Payzant, Yamdagni, et al., 1971 Payzant, J.D.; Yamdagni, R.; Kebarle, P., Hydration of CN-, NO2-, NO3-, and HO- in the gas phase, Can. J. Chem., 1971, 49, 3308. [all data]

Cunningham, Payzant, et al., 1972 Cunningham, A.J.; Payzant, J.D.; Kebarle, P., A Kinetic Study of the Proton Hydrate H+(H2O)n Equilibria in the Gas Phase, J. Am. Chem. Soc., 1972, 94, 22, 7627, https://doi.org/10.1021/ja00777a003 . [all data]

Lias, Liebman, et al., 1984 Lias, S.G.; Liebman, J.F.; Levin, R.D., Evaluated gas phase basicities and proton affinities of molecules heats of formation of protonated molecules, J. Phys. Chem. Ref. Data, 1984, 13, 695. [all data]

Meot-Ner (Mautner) and Sieck, 1985 Meot-Ner (Mautner), M.; Sieck, L.W., The Ionic Hydrogen Bond and Ion Solvation. 4. SH+ O and NH+ S Bonds. Correlations with Proton Affinity. Mutual Effects of Weak and Strong Ligands in Mixed Clusters, J. Phys. Chem., 1985, 89, 24, 5222, https://doi.org/10.1021/j100270a021 . [all data]

Meot-Ner (Mautner) and Sieck, 1991 Meot-Ner (Mautner), M.; Sieck, L.W., Proton affinity ladders from variable-temperature equilibrium measurements. 1. A reevaluation of the upper proton affinity range, J. Am. Chem. Soc., 1991, 113, 12, 4448, https://doi.org/10.1021/ja00012a012 . [all data]

Terres and Wesemann, 1932 Terres, E.; Wesemann, H., Uber Gleichgewichtsmessungen der teilreaktionen bei der umsetzung von scnwefelkohlenstoff mit wasserdampf im temperaturgebiet von 350° bis 900° C, Angew. Chem., 1932, 45, 795-832. [all data]

Cox and Pilcher, 1970 Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Walters and Blais, 1981 Walters, E.A.; Blais, N.C., Molecular beam photoionization of (H2S)n,n = 1 - 7, J. Chem. Phys., 1981, 75, 4208. [all data]

Caldwell, Masucci, et al., 1989 Caldwell, G.W.; Masucci, J.A.; Ikonomou, M.G., Negative Ion Chemical Ionization Mass Spectrometry - Binding of Molecules to Bromide and Iodide Anions, Org. Mass Spectrom., 1989, 24, 1, 8, https://doi.org/10.1002/oms.1210240103 . [all data]

Sunner and Wadso, 1957 Sunner, S.; Wadso, I., The heat of hydrolysis of thiolacetic acid, Trans. Faraday Soc., 1957, 53, 455-459. [all data]

Zangerle, Hansel, et al., 1993 Zangerle, R.; Hansel, A.; Richter, R.; Lindinger, W., The Reaction of SF5+ + H2S at Near Thermal Energies: Competition between Association and Binary Reactions, Int. J. Mass Spectrom. Ion Proc., 1993, 129, 117, https://doi.org/10.1016/0168-1176(93)87035-Q . [all data]

Gattow and Krebes, 1963 Gattow, V.G.; Krebes, B., Das kohlenstoffsulfid-di-(hydrogensulfid) SC(SH)2 und das system H2S-CS2. 2. Thermochemie des SC(SH)2, Z. Anorg. Allg. Chem., 1963, 322, 113. [all data]

Hendricks, de Clercq, et al., 2002 Hendricks, J.H.; de Clercq, H.L.; Freidhoff, C.B.; Arnold, S.T.; Eaton, J.G.; Fancher, C.; Lyapustina, S.A.; S., Anion solvation at the microscopic level: Photoelectron spectroscopy of the solvated anion clusters, NO-(Y)(n), where Y=Ar, Kr, Xe, N2O, H2S, NH3, H2O, and C2H4(OH)(2), J. Chem. Phys., 2002, 116, 18, 7926-7938, https://doi.org/10.1063/1.1457444 . [all data]

Hunter and Lias, 1998 Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Prest, Tzeng, et al., 1983, 2 Prest, H.F.; Tzeng, W.-B.; Brom, J.M., Jr.; Ng, C.Y., Molecular beam photoionization study of H2S, Int. J. Mass Spectrom. Ion Processes, 1983, 50, 315. [all data]

Smith, Adams, et al., 1981 Smith, D.; Adams, N.G.; Lindinger, W., Reactions of the HnS ions (n = 0 to 3) with several molecular gases at thermal energies, J. Chem. Phys., 1981, 75, 3365. [all data]

Kimura, Katsumata, et al., 1981 Kimura, K.; Katsumata, S.; Achiba, Y.; Yamazaki, T.; Iwata, S., Ionization energies, Ab initio assignments, and valence electronic structure for 200 molecules in Handbook of HeI Photoelectron Spectra of Fundamental Organic Compounds, Japan Scientific Soc. Press, Tokyo, 1981. [all data]

Karlsson, Mattsson, et al., 1976 Karlsson, L.; Mattsson, L.; Jadrny, R.; Bergmark, T.; Siegbahn, K., Vibrational ans vibronic structure in the valence electron spectrum of H2S, Phys. Scr., 1976, 13, 229. [all data]

Balkis, Gaines, et al., 1976 Balkis, T.; Gaines, A.F.; Ozgen, G.; Ozgen, I.T.; Flowers, M.C., Ionization of hydrogen sul- phide, selenide and telluride by electron impact, J. Chem. Soc. Faraday Trans. 2, 1976, 72, 524. [all data]

Rabalais, Debies, et al., 1974 Rabalais, J.W.; Debies, T.P.; Berkosky, J.L.; Huang, J.-T.J.; Ellison, F.O., Calculated photoionization cross sections relative experimental photoionization intensities for a selection of small molecules, J. Chem. Phys., 1974, 61, 516. [all data]

Natalis, 1973 Natalis, P., Contribution a la spectroscopie photoelectronique. Effets de l'autoionisation dans less spectres photoelectroniques de molecules diatomiques et triatomiques, Acad. R. Belg. Mem. Cl. Sci. Collect. 8, 1973, 41, 1. [all data]

Morrison and Traeger, 1973 Morrison, J.D.; Traeger, J.C., Ionization and dissociation by electron impact. I. H2O and H2S, Int. J. Mass Spectrom. Ion Phys., 1973, 11, 77. [all data]

Potts and Price, 1972 Potts, A.W.; Price, W.C., Photoelectron spectra and valence shell orbital structures of groups V VI hydrides, Proc. R. Soc. London A:, 1972, 326, 181. [all data]

Delwiche and Natalis, 1970 Delwiche, J.; Natalis, P., Photoelectron spectrometry of hydrogen sulfide, Chem. Phys. Lett., 1970, 5, 564. [all data]

Delwiche, Natalis, et al., 1970 Delwiche, J.; Natalis, P.; Collin, J.E., High resolution photoelectron spectrometry of H2S and H2Se, Intern. J. Mass Spectrom. Ion Phys., 1970, 5, 443. [all data]

Dibeler and Liston, 1968 Dibeler, V.H.; Liston, S.K., Mass-spectrometric study of photoionization. XI.Hydrogen sulfide and sulfur dioxide, J. Chem. Phys., 1968, 49, 482. [all data]

Al-Joboury and Turner, 1964 Al-Joboury, M.I.; Turner, D.W., Molecular photoelectron spectroscopy. Part II. A summary of ionization potentials, J. Chem. Soc., 1964, 4434. [all data]

Frost and McDowell, 1958 Frost, D.C.; McDowell, C.A., Excited states of the molecular ions of hydrogen fluoride, hydrogen iodide, water, hydrogen sulphide, and ammonia, Can. J. Chem., 1958, 36, 39. [all data]

Watanabe, 1954 Watanabe, K., Photoionization and total absorption cross section of gases. I. Ionization potentials of several molecules. Cross sections of NH3 and NO, J. Chem. Phys., 1954, 22, 1564. [all data]

Price, 1935 Price, W.C., The far ultraviolet absorption spectra and ionization potentials of H2S, CS2, and SO2, Bull. Am. Phys. Soc., 1935, 10, 9. [all data]

Bieri, Asbrink, et al., 1982 Bieri, G.; Asbrink, L.; Von Niessen, W., 30.4-nm He(II) photoelectron spectra of organic molecules, J. Electron Spectrosc. Relat. Phenom., 1982, 27, 129. [all data]

Wagner and Bock, 1974 Wagner, G.; Bock, H., Photoelektronenspektren und molekuleigenschaften, XXVI. Die delokalisation von schwefel-elektronenpaaren in alkylsulfiden und -disulfiden, Chem. Ber., 1974, 107, 68. [all data]

Schweig and Thiel, 1974 Schweig, A.; Thiel, W., Photoionization cross sections: He I- and He II-photoelectron spectra of homologous oxygen and sulphur compounds, Mol. Phys., 1974, 27, 265. [all data]

Bock, Wagner, et al., 1972 Bock, H.; Wagner, G.; Kroner, J., Photoelektronenspektren und molekuleigenschaften, XIV. Die delokalisation des schwefel-elektronenpaar in CH3S-substituierten aromaten, Chem. Ber., 1972, 105, 3850. [all data]

Palmer and Lossing, 1962 Palmer, T.F.; Lossing, F.P., Free radicals by mass spectrometry. XXVIII. The HS, CH3S, and phenyl-S radicals: ionization potentials and heats of formation, J. Am. Chem. Soc., 1962, 84, 4661. [all data]

Eland, 1979 Eland, J.H.D., Dissociations of state-selected C2H2+, H2S+ and D2S+ ions studied by photoelectron-photoion coincidence spectroscopy, Int. J. Mass Spectrom. Ion Phys., 1979, 31, 161. [all data]

Shimanouchi, 1972 Shimanouchi, T., Tables of Molecular Vibrational Frequencies Consolidated Volume I, National Bureau of Standards, 1972, 1-160. [all data]

Notes

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, References

  • Symbols used in this document:
    AE Appearance energy
    IE (evaluated) Recommended ionization energy
    Pc Critical pressure
    Ptriple Triple point pressure
    S°gas,1 bar Entropy of gas at standard conditions (1 bar)
    T Temperature
    Tboil Boiling point
    Tc Critical temperature
    Tfus Fusion (melting) point
    Ttriple Triple point temperature
    d(ln(kH))/d(1/T) Temperature dependence parameter for Henry's Law constant
    k°H Henry's Law constant at 298.15K
    ΔfH°gas Enthalpy of formation of gas at standard conditions
    ΔrG° Free energy of reaction at standard conditions
    ΔrH° Enthalpy of reaction at standard conditions
    ΔrS° Entropy of reaction at standard conditions
    ΔsubH Enthalpy of sublimation
    ΔvapH Enthalpy of vaporization
    ρc Critical density
  • Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
  • The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
  • Customer support for NIST Standard Reference Data products.

Từ khóa » H2+s2=h2s