Hyperbolic Trigonomic Identities
Math2.org Math Tables: Hyperbolic Trigonometric Identities |
| (Math) |
Hyperbolic Definitions
sinh(x) = ( ex - e-x )/2csch(x) = 1/sinh(x) = 2/( ex - e-x )
cosh(x) = ( e x + e -x )/2
sech(x) = 1/cosh(x) = 2/( ex + e-x )
tanh(x) = sinh(x)/cosh(x) = ( ex - e-x )/( ex + e-x )
coth(x) = 1/tanh(x) = ( ex + e-x)/( ex - e-x )
cosh2(x) - sinh2(x) = 1
tanh2(x) + sech2(x) = 1
coth2(x) - csch2(x) = 1
Inverse Hyperbolic Defintions
arcsinh(z) = ln( z +
(z2 + 1) )
arccosh(z) = ln( z
(z2 - 1) )
arctanh(z) = 1/2 ln( (1+z)/(1-z) )
arccsch(z) = ln( (1+
(1+z2) )/z )
arcsech(z) = ln( (1
(1-z2) )/z )
arccoth(z) = 1/2 ln( (z+1)/(z-1) )
Relations to Trigonometric Functions
sinh(z) = -i sin(iz)
csch(z) = i csc(iz)
cosh(z) = cos(iz)
sech(z) = sec(iz)
tanh(z) = -i tan(iz)
coth(z) = i cot(iz)
Từ khóa » Sinh X Cosh X
-
[PDF] Hyperbolic Functions - Mathcentre
-
I\sin(ix)\\\tanh X&=-i\tan(ix)\end{aligned} - Wikimedia
-
Hyperbolic Functions - LTCC Online
-
Hyperbolic Functions - Wikipedia
-
Cosh(x) + Sinh(x) Hyperbolic Functions - YouTube
-
Prove That Sinh(cosh(x))≥cosh(sinh(x)) - Math Stack Exchange
-
Prove That Cosh X - Sinh X = E-x - Stumbling Robot
-
4.11 Hyperbolic Functions
-
Graphs Of Sinh(x), Cosh(x) And Tanh(x) | Further-Core-Maths-A-Level
-
[PDF] Cosh And Sinh
-
Hyperbolic Functions - Math Is Fun
-
[PDF] The Hyperbolic Functions
-
The Graph Of The Function F(x) = Sinh(x) + Cosh(x) Is Exponential. - Toppr