Integral Sinh(x)
![]() |
| Home | Teacher | Parents | Glossary | About Us | |||||||||||
| | |||||||||||
|
|
1. Proof
ex dx - (1/2) ex dx solve left equation = (1/2) ex - (1/2) ex dx set u = - x then we find du = - dx substitute du= - dx, u= - x = (1/2) ex + (1/2) solve the right integral = (1/2) ex + (1/2) eu + C substitute back u= - x = (1/2) ex + (1/2) ex + C
| ||||||||||||||||||||
| Contact us | Advertising & Sponsorship | Partnership | Link to us © 2000-2023 Math.com. All rights reserved. Legal Notices. Please read our Privacy Policy. |
Từ khóa » Sinh X
-
Hyperbolic Functions - Wikipedia
-
Sinh, Cosh, Tanh, Coth, Sech, Csch Là Gì? - Toán Học Việt Nam - Mathvn
-
[PDF] Hyperbolic Functions - Mathcentre
-
Hyperbolic Functions - Math Is Fun
-
What Is Sinh (x)? - Quora
-
I\sin(ix)\\\tanh X&=-i\tan(ix)\end{aligned} - Wikimedia
-
Hyperbolic Functions - LTCC Online
-
4.11 Hyperbolic Functions
-
Hyperbolic Trigonomic Identities
-
Sinh(x) - Wolfram|Alpha
-
Hyperbolic Trigonometric Functions | Brilliant Math & Science Wiki

sinh x dx = cosh x + C.