Khảo Sát Và Vẽ đồ Thị Hàm Số Bậc Ba | Tăng Giáp

Tăng Giáp
  • Home
  • Forums New posts Search forums
  • Lớp 12 Vật Lí 12
  • What's new Featured content New posts New profile posts Latest activity
  • Members Current visitors New profile posts Search profile posts
Đăng nhập Có gì mới? Tìm kiếm

Tìm kiếm

Everywhere Threads This forum This thread Chỉ tìm trong tiêu đề Note By: Search Tìm nâng cao…
  • New posts
  • Search forums
Menu Đăng nhập Install the app Install How to install the app on iOS

Follow along with the video below to see how to install our site as a web app on your home screen.

Note: This feature may not be available in some browsers.

  • Home
  • Forums
  • Toán Học
  • Đại Số
  • Hàm Số
You are using an out of date browser. It may not display this or other websites correctly.You should upgrade or use an alternative browser. Khảo sát và vẽ đồ thị hàm số bậc ba
  • Thread starter Thread starter Tăng Giáp
  • Ngày gửi Ngày gửi 6/12/18
Tăng Giáp

Tăng Giáp

Administrator
Thành viên BQT Phương pháp: Các bước khảo sát và vẽ đồ thị hàm số bậc ba $y = a{x^3} + b{x^2} + cx + d$ với $a ≠ 0.$ + Bước 1. Tập xác định: $D = R.$ + Bước 2. Đạo hàm: $y’ = 3a{x^2} + 2bx + c$, $Delta’ = {b^2} – 3ac.$ $Delta’ > 0$: Hàm số có $2$ cực trị. $Delta’ le 0$: Hàm số luôn tăng hoặc luôn giảm trên $R$. + Bước 3. Đạo hàm cấp $2$: $y” = 6ax + 2b$, $y” = 0 Leftrightarrow x = – frac{b}{{3a}}.$ $x = – frac{b}{{3a}}$ là hoành độ điểm uốn, đồ thị nhận điểm uốn làm tâm đối xứng. + Bước 4. Giới hạn: Nếu $a > 0$ thì: $mathop {lim }limits_{x to – infty } y = – infty $, $mathop {lim }limits_{x to + infty } y = + infty .$ Nếu $a < 0$ thì: $mathop {lim }limits_{x to – infty } y = + infty $, $mathop {lim }limits_{x to + infty } y = – infty .$ + Bước 5. Bảng biến thiên và đồ thị: Trường hợp $a > 0$: + $Delta’ = {b^2} – 3ac > 0$: Hàm số có $2$ cực trị. Khảo sát và vẽ đồ thị hàm số bậc ba.png + $Delta’ = {b^2} – 3ac le 0$ $ Rightarrow y’ ge 0,forall x in R$: Hàm số luôn tăng trên $R$. Khảo sát và vẽ đồ thị hàm số bậc ba.png Trường hợp $a < 0$: + $Delta’ = {b^2} – 3ac > 0$: Hàm số có $2$ cực trị. Khảo sát và vẽ đồ thị hàm số bậc ba.png + $Delta’ = {b^2} – 3ac le 0$ $ Rightarrow y’ le 0,forall x in R$: Hàm số luôn giảm trên $R$. Khảo sát và vẽ đồ thị hàm số bậc ba.png Một số tính chất của hàm số bậc ba 1. Hàm số có cực đại và cực tiểu khi và chỉ khi: $Delta’ = {b^2} – 3ac > 0$. 2. Hàm số luôn đồng biến trên $R$ $ Leftrightarrow left{ begin{array}{l} a > 0\ Delta’ = {b^2} – 3ac le 0 end{array} right.$ 3. Hàm số luôn nghịch biến trên $R$ $ Leftrightarrow left{ begin{array}{l} a < 0\ Delta’ = {b^2} – 3ac le 0 end{array} right.$ 4. Để tìm giá cực trị (đường thẳng đi qua $2$ điểm cực trị) ta lấy $f(x)$ chia cho $f'(x)$: $f(x) = f'(x).g(x) + rx + q$. Nếu ${x_1}, {x_2}$ là hai nghiệm của $f'(x)$ thì: $f({x_1}) = r{x_1} + q$, $f({x_2}) = r{x_2} + q.$ Khi đó đường thẳng đi qua các điểm cực trị là $y = rx + q$. 5. Đồ thị luôn có điểm uốn $I$ và là tâm đối xứng của đồ thị. 6. Đồ thị cắt $Ox$ tại $3$ điểm phân biệt $ Leftrightarrow $ hàm số có hai cực trị trái dấu nhau. 7. Đồ thị cắt $Ox$ tại hai điểm phân biệt $ Leftrightarrow $ đồ thị hàm số có hai cực trị và một cực trị nằm trên $Ox$. 8. Đồ thị cắt $Ox$ tại một điểm $ Leftrightarrow $ hoặc hàm số không có cực trị hoặc hàm số có hai cực trị cùng dấu. 9. Tiếp tuyến: Gọi $I$ là điểm uốn. Cho $M in (C).$ + Nếu $M equiv I$ thì có đúng một tiếp tuyến đi qua $M$ và tiếp tuyến này có hệ số góc nhỏ nhất (nếu $a > 0$), lớn nhất (nếu $a < 0$). + Nếu $M$ khác $I$ thì có đúng $2$ tiếp tuyến đi qua $M$. Ví dụ minh họa Ví dụ 1. Khảo sát sự biến thiên và vẽ đồ thị $(C)$ của hàm số: a. $y = – {x^3} + 3{x^2} – 4.$ b. $y = – {x^3} + 3{{rm{x}}^2}.$ c. $y = frac{1}{3}{x^3} + 2{x^2} + 4x.$ a. Tập xác định: $D = R.$ Chiều biến thiên: Ta có: $y’ = – 3{{rm{x}}^2} + 6{rm{x}}$ $ = – 3xleft( {x – 2} right).$ $y’ = 0$ $ Leftrightarrow – 3{rm{x}}left( {x – 2} right) = 0$ $ Leftrightarrow x = 0$ hoặc $x = 2.$ Hàm số nghịch biến trên các khoảng $left( { – infty ;0} right)$ và $left( {2; + infty } right)$, đồng biến trên khoảng $left( {0;2} right)$. Hàm số đạt cực đại tại điểm $x = 2$, giá trị cực đại của hàm số là $yleft( 2 right) = 0.$ Hàm số đạt cực tiểu tại điểm $x = 0$, giá trị cực tiểu của hàm số là $yleft( 0 right) = -4.$ Giới hạn của hàm số tại vô cực: $mathop {lim }limits_{x to – infty } y = + infty $, $mathop {lim }limits_{x to + infty } y = – infty .$ Bảng biến thiên: Khảo sát và vẽ đồ thị hàm số bậc ba.png Đồ thị: Cho $x = – 1 Rightarrow y = 0$, $x = 3 Rightarrow y = -4.$ Khảo sát và vẽ đồ thị hàm số bậc ba.png b. Tập xác định: $D = R.$ Chiều biến thiên: Ta có: $y’ = – 3{{rm{x}}^2} + 6{rm{x}} = – 3xleft( {x – 2} right).$ $y’ = 0 Leftrightarrow – 3{rm{x}}left( {x – 2} right) = 0$ $ Leftrightarrow x = 0$ hoặc $x = 2.$ Hàm số nghịch biến trên các khoảng $left( { – infty ;0} right)$ và $left( {2; + infty } right)$, đồng biến trên khoảng $left( {0;2} right).$ Hàm số đạt cực đại tại điểm $x = 2$, giá trị cực đại của hàm số là $yleft( 2 right) = 4.$ Hàm số đạt cực tiểu tại điểm $x = 0$, giá trị cực tiểu của hàm số là $yleft( 0 right) = 0.$ Giới hạn của hàm số tại vô cực: $mathop {lim }limits_{x to – infty } y = + infty $, $mathop {lim }limits_{x to + infty } y = – infty .$ Bảng biến thiên: Khảo sát và vẽ đồ thị hàm số bậc ba.png Đồ thị: Cho $x = – 1 Rightarrow y = 4$, $x = 3 Rightarrow y = 0$. Khảo sát và vẽ đồ thị hàm số bậc ba.png c. Tập xác định: $D = R.$ Chiều biến thiên: Ta có: $y’ = {{rm{x}}^2} + 4{rm{x}} + 4$ $ = {left( {x + 2} right)^2} ge 0$ $forall x in R.$ Hàm số đồng biến trên khoảng $left( { – infty ; + infty } right)$, hàm số không có cực trị. Giới hạn của hàm số tại vô cực: $mathop {lim }limits_{x to – infty } y = – infty $, $mathop {lim }limits_{x to + infty } y = + infty .$ Bảng biến thiên: Khảo sát và vẽ đồ thị hàm số bậc ba.png Đồ thị: Cho $x = 0 Rightarrow y = 0.$ Khảo sát và vẽ đồ thị hàm số bậc ba.png Ví dụ 2. Cho hàm số $y = – {x^3} + 3{x^2} + 1$ có đồ thị $(C).$ a. Khảo sát sự biến thiên và vẽ đồ thị $(C)$ của hàm số. b. Viết phương trình tiếp tuyến của đồ thị $(C)$ tại $Aleft( {3;1} right).$ a. Khảo sát sự biến thiên và vẽ đồ thị: Tập xác định: $D = R.$ Chiều biến thiên: Ta có: $y’ = – 3{x^2} + 6x = – 3xleft( {x – 2} right).$ $y’ = 0 Leftrightarrow – 3xleft( {x – 2} right) = 0$ $ Leftrightarrow x = 0$ hoặc $x = 2.$ $y’ > 0 Leftrightarrow x in left( {0 ; 2} right)$, $y’ < 0$ $ Leftrightarrow x in left( { – infty ; 0} right) cup left( {2 ; + infty } right).$ Hàm số nghịch biến trên mỗi khoảng $left( { – infty ;0} right)$ và $left( {2; + infty } right)$, đồng biến trên khoảng $left( {0;2} right).$ Hàm số đạt cực đại tại điểm $x = 2$, giá trị cực đại của hàm số là $yleft( 2 right) = 5.$ Hàm số đạt cực tiểu tại điểm $x = 0$, giá trị cực tiểu của hàm số là $yleft( 0 right) = 1.$ Giới hạn của hàm số tại vô cực: $mathop {lim }limits_{x to – infty } y = + infty $, $mathop {lim }limits_{x to + infty } y = – infty .$ Bảng biến thiên: Khảo sát và vẽ đồ thị hàm số bậc ba.png Đồ thị: Khảo sát và vẽ đồ thị hàm số bậc 3-1.png b. Phương trình tiếp tuyến của $(C)$ tại điểm $Aleft( {3;1} right)$ có dạng: $y – 1 = y’left( 3 right).left( {x – 3} right)$ $ Leftrightarrow y = – 9left( {x – 3} right) + 1$ $ Leftrightarrow y = – 9x + 28.$ Ví dụ 3. Cho hàm số $y = {x^3} + 3{{rm{x}}^2} – mx – 4$, trong đó $m$ là tham số. a. Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho với $m = 0$. b. Với giá trị nào của $m$ thì hàm số nghịch biến trên khoảng $left( { – infty ;0} right)$. a. Khi $m = 0$ thì hàm số là: $y = {x^3} + 3{{rm{x}}^2} – 4.$ Tập xác định: $D = R.$ Chiều biến thiên: Ta có: $y’ = 3{{rm{x}}^2} + 6{rm{x}} = 3{rm{x}}left( {x + 2} right).$ $y’ = 0 Leftrightarrow 3{rm{x}}left( {x + 2} right) = 0$ $ Leftrightarrow x = 0$ hoặc $x = – 2.$ Hàm số đồng biến trên các khoảng $left( { – infty ; – 2} right)$ và $left( {0; + infty } right)$, nghịch biến trên khoảng $left( { – 2;0} right).$ Hàm số đạt cực đại tại điểm $x = – 2$, giá trị cực đại của hàm số là $yleft( { – 2} right) = 0.$ Hàm số đạt cực tiểu tại điểm $x = 0$, giá trị cực tiểu của hàm số là $yleft( 0 right) = – 4.$ Giới hạn của hàm số tại vô cực: $mathop {lim }limits_{x to – infty } y = + infty $, $mathop {lim }limits_{x to + infty } y = – infty .$ Bảng biến thiên: Khảo sát và vẽ đồ thị hàm số bậc 3-2.png Đồ thị: Cho $x = – 3 Rightarrow y = – 4$, $x = 1 Rightarrow y = 0.$ Khảo sát và vẽ đồ thị hàm số bậc 3-3.png b. Hàm số $y = {x^3} + 3{{rm{x}}^2} – mx – 4$ đồng biến trên khoảng $left( { – infty ;0} right).$ $ Leftrightarrow y’ = 3{{rm{x}}^2} + 6{rm{x}} – m ge 0$, $forall x in left( { – infty ; 0} right).$ Xét: $gleft( x right) = 3{{rm{x}}^2} + 6{rm{x}} – m$, $x in left( { – infty ; 0} right).$ $g’left( x right) = 6{rm{x}} + 6$ $ Rightarrow g’left( x right) = 0 Leftrightarrow x = – 1.$ Bảng biến thiên: Khảo sát và vẽ đồ thị hàm số bậc 3-3.png Nhìn vào bảng biến thiên ta thấy: $y’ = gleft( x right) = 3{{rm{x}}^2} + 6{rm{x}} – m ge 0$, $forall x in left( { – infty ; 0} right)$ $ Leftrightarrow – 3 – m ge 0 Leftrightarrow m le – 3.$ Vậy khi $m le – 3$ thì yêu cầu của bài toán được thỏa mãn. Ví dụ 4. Cho hàm số $y = 2{x^3} – 9{x^2} + 12x – 4$ có đồ thị $(C).$ a. Khảo sát sự biến thiên và vẽ đồ thị của hàm số. b. Tìm $m$ để phương trình sau có $6$ nghiệm phân biệt: $2{left| x right|^3} – 9{x^2} + 12left| x right| = m.$ a. Bảng biến thiên: Khảo sát và vẽ đồ thị hàm số bậc 3-4.png Đồ thị: Khảo sát và vẽ đồ thị hàm số bậc 3-4.png b. Ta có: $2{left| x right|^3} – 9{x^2} + 12left| x right| = m$ $ Leftrightarrow 2{left| x right|^3} – 9{x^2} + 12left| x right| – 4$ $ = m – 4.$ Gọi $left( C right):y = 2{x^3} – 9{x^2} + 12x – 4$ và $left( {C’} right):y = 2{left| x right|^3} – 9{x^2} + 12left| x right| – 4.$ Ta thấy khi $x ge 0$ thì: $left( {C’} right):y = 2{x^3} – 9{x^2} + 12x – 4.$ Mặt khác hàm số của đồ thị $(C’)$ là hàm số chẵn nên $(C’)$ nhận $Oy$ là trục đối xứng. Từ đồ thị $(C)$ ta suy ra đồ thị $(C’)$ như sau: + Giữ nguyên phần đồ thị $(C)$ bên phải trục $Oy$, ta được $left( {{{C’}_1}} right).$ + Lấy đối xứng qua trục $Oy$ phần $left( {{{C’}_1}} right)$, ta được $left( {{{C’}_2}} right).$ + $left( {C’} right) = left( {{{C’}_1}} right) cup left( {{{C’}_2}} right).$ Khảo sát và vẽ đồ thị hàm số bậc 3-4.png Số nghiệm của phương trình: $2{left| x right|^3} – 9{x^2} + 12left| x right| = m$ $ Leftrightarrow 2{left| x right|^3} – 9{x^2} + 12left| x right| – 4 = m – 4$ là số giao điểm của đồ thị $(C’)$ và đường thẳng $left( d right):y = m – 4.$ Từ đồ thị $(C’)$, ta thấy yêu cầu bài toán: $ Leftrightarrow 0 < m – 4 < 1$ $ Leftrightarrow 4 < m < 5.$

Attachments

  • Khảo sát và vẽ đồ thị hàm số bậc ba.png Khảo sát và vẽ đồ thị hàm số bậc ba.png 3.7 KB · Đọc: 491
  • Khảo sát và vẽ đồ thị hàm số bậc ba.png Khảo sát và vẽ đồ thị hàm số bậc ba.png 3.2 KB · Đọc: 529
  • Khảo sát và vẽ đồ thị hàm số bậc ba.png Khảo sát và vẽ đồ thị hàm số bậc ba.png 2.9 KB · Đọc: 488
  • Khảo sát và vẽ đồ thị hàm số bậc 3.png Khảo sát và vẽ đồ thị hàm số bậc 3.png 9.8 KB · Đọc: 589
  • Khảo sát và vẽ đồ thị hàm số bậc 3-4.png Khảo sát và vẽ đồ thị hàm số bậc 3-4.png 7.7 KB · Đọc: 513
Chỉnh sửa cuối: 6/12/18 You must log in or register to reply here. Share: Bluesky LinkedIn Reddit Pinterest Tumblr WhatsApp Email Share Link

Trending content

  • Tăng Giáp Thread 'Dạng toán 1. Xác định miền nghiệm của bất phương trình và hệ bất phương trình bậc nhất hai ẩn.'
    • Tăng Giáp
    • 8/12/18
    Trả lời: 0
  • Tăng Giáp Thread 'Công thức giải nhanh vật lý phần dao động cơ'
    • Tăng Giáp
    • 10/4/15
    Trả lời: 6
  • Doremon Thread 'Các bước khảo sát hàm bậc nhất trên bậc nhất'
    • Doremon
    • 3/12/14
    Trả lời: 6
  • Tăng Giáp Thread 'Công thức giải nhanh cấp số cộng và cấp số nhân'
    • Tăng Giáp
    • 5/10/17
    Trả lời: 18
  • Tăng Giáp Thread 'Cách giải phương trình bậc 3 tổng quát'
    • Tăng Giáp
    • 7/12/18
    Trả lời: 1
  • Doremon Thread 'Mặt trụ tròn xoay'
    • Doremon
    • 24/1/15
    Trả lời: 97
  • Doremon Thread 'Sóng điện từ'
    • Doremon
    • 22/12/14
    Trả lời: 25
  • Tăng Giáp Thread 'công thức giải nhanh vật lý sóng cơ'
    • Tăng Giáp
    • 14/4/15
    Trả lời: 0
  • Doremon Thread 'Dạng 1: Mối liên hệ giữa λ, v, f, T'
    • Doremon
    • 29/9/14
    Trả lời: 0
  • Doremon Thread 'Chiều dao động của phần tử trên phương truyền sóng'
    • Doremon
    • 30/10/14
    Trả lời: 4

Latest posts

  • Tăng Giáp Sóng dừng
    • Latest: Tăng Giáp
    • 2/12/25
    Sóng cơ
  • Tăng Giáp Giao Thoa Sóng Cơ
    • Latest: Tăng Giáp
    • 2/12/25
    Sóng cơ
  • Tăng Giáp Sóng điện từ
    • Latest: Tăng Giáp
    • 2/12/25
    Bài 22: Sóng điện từ
  • Tăng Giáp Sóng ngang. Sóng dọc. Sự truyền năng lượng của sóng cơ
    • Latest: Tăng Giáp
    • 2/12/25
    Sóng cơ
  • Tăng Giáp Mô tả sóng
    • Latest: Tăng Giáp
    • 2/12/25
    Sóng cơ
  • Tăng Giáp Dao động tắt dần - dao động cưỡng bức
    • Latest: Tăng Giáp
    • 2/12/25
    Dao động cơ
  • Tăng Giáp Động năng. Thế năng. Sự chuyển hoá năng lượng trong dao động điều hoà
    • Latest: Tăng Giáp
    • 2/12/25
    Dao động cơ

Members online

No members online now. Total: 22 (members: 0, guests: 22)

Share this page

Bluesky LinkedIn Reddit Pinterest Tumblr WhatsApp Email Share Link
  • Home
  • Forums
  • Toán Học
  • Đại Số
  • Hàm Số
Back Top

Từ khóa » Khảo Sát Hàm Số Bậc 3 4