Khoảng Cách Giữa Hai đường Thẳng Chéo Nhau: Phương Pháp 3

Tăng Giáp
  • Home
  • Forums New posts Search forums
  • Lớp 12 Vật Lí 12
  • What's new Featured content New posts New profile posts Latest activity
  • Members Current visitors New profile posts Search profile posts
Đăng nhập Có gì mới? Tìm kiếm

Tìm kiếm

Everywhere Threads This forum This thread Chỉ tìm trong tiêu đề Note By: Search Tìm nâng cao…
  • New posts
  • Search forums
Menu Đăng nhập Install the app Install How to install the app on iOS

Follow along with the video below to see how to install our site as a web app on your home screen.

Note: This feature may not be available in some browsers.

  • Home
  • Forums
  • Lớp 11
  • Toán học 11
  • Chủ đề 6: Hình học
  • Chương 3: Vector và Quan hệ vuông góc
You are using an out of date browser. It may not display this or other websites correctly.You should upgrade or use an alternative browser. Khoảng cách giữa hai đường thẳng chéo nhau: Phương pháp 3
  • Thread starter Thread starter Tăng Giáp
  • Ngày gửi Ngày gửi 6/12/18
Tăng Giáp

Tăng Giáp

Administrator
Thành viên BQT Phương pháp 3: Dựng đoạn vuông góc chung và tính độ dài đoạn đó. Ta xét 2 trường hợp sau: 1. Trường hợp 1: $Δ$ và $Δ’$ vừa chéo nhau vừa vuông góc với nhau + Bước 1: Chọn mặt phẳng $(α)$ chứa $Δ’$ và vuông góc với $Δ$ tại $I.$ + Bước 2: Trong mặt phẳng $(α)$ kẻ $IJ \bot \Delta’$. Khi đó $IJ$ là đoạn vuông góc chung của hai đường thẳng $Δ$ và $Δ’$, và $d(\Delta ,\Delta’) = IJ$. Khoảng cách giữa hai đường thẳng chéo nhau.png Ví dụ 4: Cho hình lập phương $ABCD.A’B’C’D’$ cạnh bằng $a$. Xác định đoạn vuông góc chung và tính khoảng cách giữa hai đường thẳng $AD’$ và $A’B’$ bằng bao nhiêu? Khoảng cách giữa hai đường thẳng chéo nhau.png Ta có $A’B’ \bot \left( {ADD’A’} \right).$ Gọi $H$ là giao điểm của $AD’$ với $A’D$. Vì $ADD’A’$ là hình vuông nên $A’H \bot AD’.$ Ta có $\left\{ \begin{array}{l} A’H \bot AD’\\ A’H \bot A’B’ \end{array} \right.$, suy ra $A’H$ là đoạn vuông góc chung của hai đường thẳng $AD’$ và $A’B’.$ $d\left( {A’B’;AD’} \right) = A’H = \frac{{a\sqrt 2 }}{2}.$ 2. Trường hợp 2: $Δ$ và $Δ’$ chéo nhau mà KHÔNG vuông góc với nhau Ta dựng đoạn vuông góc chung của hai đường thẳng $Δ$ và $Δ’$ theo một trong hai cách sau đây: Cách 1: + Bước 1: Chọn mặt phẳng $(α)$ chứa $Δ’$ và song song với $Δ.$ + Bước 2: Dựng $d$ là hình chiếu vuông góc của $Δ$ xuống $(α)$ bằng cách lấy điểm $M \in \Delta $ dựng đoạn $MN \bot \left( \alpha \right)$, lúc đó $d$ là đường thẳng đi qua $N$ và và song song với $Δ.$ + Bước 3: Gọi $H = d \cap \Delta’$, dựng $HK\parallel MN$. Khi đó $HK$ là đoạn vuông góc chung của $Δ$ và $Δ’$, và $d(\Delta ,\Delta’) = HK = MN$. Khoảng cách giữa hai đường thẳng chéo nhau.png Cách 2: + Bước 1: Chọn mặt phẳng $(α) ⊥ Δ$ tại $I.$ + Bước 2: Tìm hình chiếu $d$ của $Δ’$ xuống mặt phẳng $(α).$ + Bước 3: Trong mặt phẳng $(α)$, dựng $IJ \bot d$, từ $J$ dựng đường thẳng song song với $Δ$ cắt $Δ’$ tại $H$, từ $H$ dựng $HM\parallel IJ$. Khi đó $HM$ là đoạn vuông góc chung của hai đường thẳng $Δ$ và $Δ’$, và $d(\Delta ,\Delta ‘) = HM = IJ$. Khoảng cách giữa hai đường thẳng chéo nhau.png Ví dụ 5: Cho hình chóp $SABC$ có $SA = 2a$ và vuông góc với mặt phẳng $(ABC)$, đáy $ABC$ là tam giác vuông cân tại $B$ với $AB = a$. Gọi $M$ là trung điểm của $AC.$ 1. Hãy dựng đoạn vuông góc chung của $SM$ và $BC.$ 2. Tính độ dài đoạn vuông góc chung của $SM$ và $BC.$ Khoảng cách giữa hai đường thẳng chéo nhau.png 1. Để dựng đoạn vuông góc chung của $SM$ và $BC$ ta có thể lựa chọn 1 trong 2 cách sau: Cách 1: Gọi $N$ là trung điểm của $AB$, suy ra: $BC//MN \Rightarrow BC//\left( {SMN} \right).$ Ta có: $\left\{ \begin{array}{l} MN \bot AB\\ MN \bot SA \end{array} \right. \Rightarrow MN \bot \left( {SAB} \right)$ $ \Rightarrow \left( {SMN} \right) \bot \left( {SAB} \right).$ $\left( {SMN} \right) \cap \left( {SAB} \right) = SN.$ Hạ $BH \bot SN \Rightarrow BH \bot \left( {SMN} \right).$ Từ $H$ dựng $Hx$ song song với $BC$ và cắt $SM$ tại $E$. Từ $E$ dựng $Ey$ song song với $BH$ và cắt $BC$ tại $F$. Đoạn $EF$ là đoạn vuông góc chung của $SM$ và $BC.$ Cách 2: Nhận xét rằng: $\left\{ \begin{array}{l} BC \bot AB\\ BC \bot SA \end{array} \right. \Rightarrow BC \bot \left( {SAB} \right).$ Do đó $(SAB)$ chính là mặt phẳng qua $B$ thuộc $BC$ và vuông góc với $BC.$ Gọi $N$ là trung điểm của $AB$ suy ra: $MN//BC \Rightarrow MN \bot \left( {SAB} \right)$. Suy ra $MN$ là hình chiếu vuông góc của $SM$ trên $(SAB).$ Hạ $BH \bot SN \Rightarrow BH \bot \left( {SMN} \right)$. Từ $H$ dựng $Hx$ song song với $BC$ và cắt $SM$ tại $E$. Từ $E$ dựng $Ey$ song song với $BH$ và cắt $BC$ tại $F.$ Đoạn $EF$ là đoạn vuông góc chung của $SM$ và $BC.$ 2. Nhận xét rằng tam giác $SAN$ và tam giác $BHN$ là $2$ tam giác vuông có $2$ góc nhọn đối đỉnh nên chúng đồng dạng, suy ra: $\frac{{BH}}{{SA}} = \frac{{BN}}{{SN}} \Rightarrow BH = \frac{{SA.BN}}{{SN}}.$ Trong đó: $BN = \frac{1}{2}AB = \frac{a}{2}.$ $S{N^2} = S{A^2} + A{N^2}$ $ = {\left( {2a} \right)^2} + {\left( {\frac{a}{2}} \right)^2} = \frac{{17{a^2}}}{4}$ $ \Rightarrow SN = \frac{{a\sqrt {17} }}{2}.$ Suy ra: $BH = \frac{{2a.\frac{a}{2}}}{{\frac{{a\sqrt {17} }}{2}}} = \frac{{2a\sqrt {17} }}{{17}}.$ Vậy khoảng cách giữa $SM$ và $BC$ bằng $\frac{{2a\sqrt {17} }}{{17}}$. You must log in or register to reply here. Share: Bluesky LinkedIn Reddit Pinterest Tumblr WhatsApp Email Share Link

Trending content

  • Tăng Giáp Thread 'Dạng toán 1. Xác định miền nghiệm của bất phương trình và hệ bất phương trình bậc nhất hai ẩn.'
    • Tăng Giáp
    • 8/12/18
    Trả lời: 0
  • H Thread 'Cực đại và cực tiểu của hàm số'
    • Huy Hoàng
    • 22/2/16
    Trả lời: 179
  • Minh Toán Thread 'Bài tập trắc nghiệm hình chóp'
    • Minh Toán
    • 10/11/17
    Trả lời: 148
  • V Thread 'Bài 2. CHUYỂN ĐỘNG THẲNG ĐỀU'
    • Vật Lí
    • 19/9/16
    Trả lời: 98
  • Doremon Thread 'Giải phương trình logarit'
    • Doremon
    • 2/12/14
    Trả lời: 96
  • H Thread 'Ứng dụng tích phân tính diện tích và thể tích'
    • Huy Hoàng
    • 20/2/16
    Trả lời: 170
  • Doremon Thread 'SỰ ĐỒNG BIẾN ,NGHỊCH BIẾN CỦA HÀM SỐ'
    • Doremon
    • 4/12/14
    Trả lời: 165
  • V Thread 'Bài 3. Chuyển động thẳng biến đổi đều'
    • Vật Lí
    • 19/9/16
    Trả lời: 172
  • Doremon Thread 'Mặt trụ tròn xoay'
    • Doremon
    • 24/1/15
    Trả lời: 97
  • H Thread 'Chuyên đề mặt nón tròn xoay'
    • Huy Hoàng
    • 22/1/15
    Trả lời: 102

Latest posts

  • Tăng Giáp Sóng dừng
    • Latest: Tăng Giáp
    • 2/12/25
    Sóng cơ
  • Tăng Giáp Giao Thoa Sóng Cơ
    • Latest: Tăng Giáp
    • 2/12/25
    Sóng cơ
  • Tăng Giáp Sóng điện từ
    • Latest: Tăng Giáp
    • 2/12/25
    Bài 22: Sóng điện từ
  • Tăng Giáp Sóng ngang. Sóng dọc. Sự truyền năng lượng của sóng cơ
    • Latest: Tăng Giáp
    • 2/12/25
    Sóng cơ
  • Tăng Giáp Mô tả sóng
    • Latest: Tăng Giáp
    • 2/12/25
    Sóng cơ
  • Tăng Giáp Dao động tắt dần - dao động cưỡng bức
    • Latest: Tăng Giáp
    • 2/12/25
    Dao động cơ
  • Tăng Giáp Động năng. Thế năng. Sự chuyển hoá năng lượng trong dao động điều hoà
    • Latest: Tăng Giáp
    • 2/12/25
    Dao động cơ
  • Tăng Giáp Bài 5. Điện thế
    • Latest: Tăng Giáp
    • 25/11/25
    Chương 1. Điện tích - Điện trường
  • Tăng Giáp Bài 6. Tụ Điện
    • Latest: Tăng Giáp
    • 25/11/25
    Chương 1. Điện tích - Điện trường
  • Tăng Giáp Cách giải phương trình bậc 3 tổng quát
    • Latest: Tăng Giáp
    • 22/11/25
    Bài 01. Phương trình

Members online

No members online now. Total: 11 (members: 0, guests: 11)

Share this page

Bluesky LinkedIn Reddit Pinterest Tumblr WhatsApp Email Share Link
  • Home
  • Forums
  • Lớp 11
  • Toán học 11
  • Chủ đề 6: Hình học
  • Chương 3: Vector và Quan hệ vuông góc
Back Top

Từ khóa » Khoảng Cách Giữa Hai đường Thẳng Sm Và Bc Bằng