Khoảng Cách Từ 1 điểm đến 1 đường Thẳng

Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau
  • HOT Ra mắt Sách tổng ôn 12 (2k8) toán, văn, anh.... (từ 80k/1 cuốn)
Trang trước Trang sau

Bài viết Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau.

  • Cách giải bài tập Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau
  • Ví dụ minh họa Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau
  • Bài tập vận dụng Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau
  • Bài tập tự luyện Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

(199k) Xem Khóa học Toán 12 KNTTXem Khóa học Toán 12 CDXem Khóa học Toán 12 CTST

Bài giảng: Các dạng bài về khoảng cách, góc trong không gian - Cô Nguyễn Phương Anh (Giáo viên VietJack)

A. Phương pháp giải

Quảng cáo

- Muốn tìm khoảng cách từ một điểm M đến đường thẳng d: có 2 cách sau:

+ Cách 1: Tìm hình chiếu H của điểm đó đến d => MH là khoảng cách từ A đến d

+ Cách 2. công thức (với u là vectơ chỉ phương của d và M0 là một điểm thuộc d)

Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

- Muốn tìm khoảng cách giữa hai đường thẳng chéo nhau d (u là vectơ chỉ phương của d và d đi qua M0) và d’ ((u') ⃗ là vectơ chỉ phương của d’ và d’ đi qua M0') ta làm như sau:

+ Viết phương trình mặt phẳng (P) chứa d và song song d’

+ Khoảng cách giữa d và d’ chính là khoảng cách từ điểm M0' đến mặt phẳng (P) d( d,d’) = d(M0',(P))

+ Hoặc dùng công thức:

Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

B. Ví dụ minh họa

Ví dụ: 1

Tìm khoảng cách của A(-2; 1; 3) đến đường thẳng Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

A. Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

B. Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

C. 2

D. Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

Quảng cáo

Lời giải:

Đường thẳng d đi qua B(0;1; -1) và có vectơ chỉ phương Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

Ta có: Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

Vậy

Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

Chọn B.

Ví dụ: 2

Cho mặt phẳng (P): 3x – 2y – z + 5 = 0 và đường thẳng Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau Tính khoảng cách giữa d và (P)

A. Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

B. Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

C. Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

D. Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

Lời giải:

Mặt phẳng (P) có vecto pháp tuyến Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

Đường thẳng d có vecto chỉ phương Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau và đi qua điểm M0(1;7;3)

Ta có: Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

Vậy d // (P)

Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

Chọn D.

Ví dụ: 3

Tính khoảng cách giữa hai đường thẳng

Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

A. Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

B. Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

C. Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

D. 1

Lời giải:

Cách 1:

Đường thẳng d có vecto chỉ phương là: Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

Đường thẳng d’ có vecto chỉ phương là: Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau .

- Gọi (P) là mặt phẳng chứa d và song song với d’. (P) nhận vectơ pháp tuyến là

Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

M0(1;-1;1) thuộc d cũng thuộc (P) nên phương trình mặt phẳng (P) là:

- 1(x-1) – 2(y+1) + 1(z-1) = 0 hay x + 2y – z + 2 = 0

- d’ đi qua M0'(2;-2;3)

Vậy Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

Cách 2:

Ta có:

Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

Vậy

Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

chọn A.

Quảng cáo

Ví dụ: 4

Trong không gian với hệ tọa độ Oxyz; cho đường thẳng Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau và điểm A( -1; 2; 1). Tính khoảng cách từ điểm A đến đường thẳng d?

A.Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

B. Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

C. Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

D. Đáp án khác

Lời giải:

+ Đường thẳng d đi qua điểm M( 1; 0; - 2) và có vecto chỉ phương Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

+ Ta có: Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

=> Khoảng cách từ A đến đường thẳng d là:

Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

Chọn C.

Ví dụ: 5

Trong không gian với hệ tọa độ Oxyz; cho hai đường thẳng Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau . Xác định khoảng cách giữa hai đường thẳng đã cho?

A. Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

B.Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

C.Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

D. Tất cả sai

Lời giải:

+ Đường thẳng d đi qua A( 1;0; - 2) và có vecto chỉ phương Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

+ Đường thẳng d’ đi qua B( 2; -1; 2) và có vecto chỉ phương Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

=> Khoảng cách giữa hai đường thẳng đã cho là:

Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

Chọn B.

Quảng cáo

Ví dụ: 6

Trong không gian với hệ tọa độ Oxyz; cho 3 điểm A( 0; 1; 2); B( -2;0; 1) và C( 2; 1; -3). Tính khoảng cách từ điểm A đến đường thẳng BC?

A.Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

B.Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

C. Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

D. Đáp án khác

Lời giải:

+ Đường thẳng BC đi qua B( -2; 0;1) và nhận vecto Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau làm vecto chỉ phương

+ Ta có:Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

=> Khoảng cách từ điể A đến đường thẳng BC là:

Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

Chọn A.

Ví dụ: 7

Trong không gian với hệ tọa độ Oxyz; cho bốn điểm A(1; 2; -1); B( -2; 1; 1) C( 2; 1; 3) và D( -1; 0; 5). Tính khoảng cách hai đường thẳng AB và CD? biết rằng ba điểm A, C và D không thẳng hàng.

A. Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

B. Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

C. Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

D. Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

Lời giải:

+ Đường thẳng AB: đi qua A(1;2; -1) và nhận vecto Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau làm vecto chỉ phương

+ Đường thẳng CD đi qua C( 2; 1; 3) và nhận vecto Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau làm vecto chỉ phương.

+ Hai đường thẳng AB và CD có cùng vecto chỉ phương và điểm A không thuộc đường thẳng CD.

=> AB// CD nên d( AB; CD) = d( A; CD)

+ Ta có: Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

Chọn C.

Ví dụ: 8

Trong không gian với hệ tọa độ Oxyz; cho điểm A(-1; 0;2) và đường thẳng d: Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau . Tìm m để khoảng cách từ A đến d là Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau ?

A. m= -1 hoặc m= (- 2)/3

B. m= - 1 hoặc m= 1/7

C. m= 1 hoặc m= - 1

D. m= 1 hoặc m= 1/7

Lời giải:

+ Đường thẳng d đi qua M( 2; 1; 2) và có vecto chỉ phương Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

+ Ta có; Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

+ Theo đầu bài ta có: d( A; d)= Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

Chọn B.

Ví dụ: 9

Trong không gian với hệ tọa độ Oxyz; cho điểm A( 1; m;2) và đường thẳng Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau . Tìm m để khoảng cách từ A đến đường thẳng d là 2?

A. m= 2

B. m= - 1

C. m= 3

D. m= - 4

Lời giải:

+ Đường thẳng d đi qua M( 1; 2; 0) và có vecto chỉ phương Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

+ Ta có: Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

+ Để khoảng cách từ A đến d là 2 thì:

Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

Chọn A.

C. Bài tập vận dụng

Câu 1:

Tìm khoảng cách của A( 1;-2; 1) đến đường thẳng Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

A. Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

B. Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

C. 2

D. Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

Lời giải:

Đường thẳng d đi qua B(2;0; -1) và có vectơ chỉ phương Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

Ta có: Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

Vậy

Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

Chọn B.

Câu 2:

Cho mặt phẳng (P): x + 2y – z + 1= 0 và đường thẳng Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau . Tính khoảng cách giữa d và (P)

A. Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

B.Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

C.Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

D. Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

Lời giải:

Mặt phẳng (P) có vecto pháp tuyến Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

Đường thẳng d có vecto chỉ phương Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau và đi qua điểm M0 (1;0;3)

Ta có: Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

Vậy d // (P)

Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

Chọn C.

Câu 3:

Tính khoảng cách giữa hai đường thẳng

Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

A. Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

B. Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

C.Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

D. Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

Lời giải:

Đường thẳng d đi qua A( 2; -1; 1) và có vecto chỉ phương Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau .

Đường thẳng d’ đi qua B( 0; -2; 1) và có vecto chỉ phương Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

Ta có: Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

Vậy

Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

Chọn D.

Câu 4:

Trong không gian với hệ tọa độ Oxyz; cho đường thẳng Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau và điểm A( 0;-2; 3). Tính khoảng cách từ điểm A đến đường thẳng d?

A. Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

B.Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

C. Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

D. Đáp án khác

Lời giải:

+ Đường thẳng d đi qua điểm M( 0;1; -1) và có vecto chỉ phương Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

+ Ta có; Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

=> Khoảng cách từ A đến đường thẳng d là:

Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

Chọn A.

Câu 5:

Trong không gian với hệ tọa độ Oxyz; cho hai đường thẳng Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau . Xác định khoảng cách giữa hai đường thẳng đã cho?

A. Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

B. Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

C. Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

D. Tất cả sai

Lời giải:

+ Đường thẳng d đi qua A( 1;0; 0) và có vecto chỉ phương Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

+ Đường thẳng d’ đi qua B(0;1; 2) và có vecto chỉ phương Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

=> Khỏang cách giữa hai đường thẳng đã cho là:

Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

Chọn D.

Câu 6:

Trong không gian với hệ tọa độ Oxyz; cho hai điểm A( 2; -1; -1); B(2; 3; 1). Tính khoảng cách từ điểm O đến đường thẳng AB?

A.Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

B. Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

C. Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

D. Đáp án khác

Lời giải:

+ Đường thẳng AB đi qua A( 2; -1; -1) và nhận vecto Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau làm vecto chỉ phương

+ Ta có: Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

=>Khoảng cách từ điểm O đến đường thẳng AB là:

Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

Chọn A.

Câu 7:

Trong không gian với hệ tọa độ Oxyz; cho bốn điểm A(0; 0; 2); B(1; 2; -1) C( 2; 1; 3) và D( 4; 5; -3). Tính khoảng cách hai đường thẳng AB và CD? biết rằng ba điểm A, C và D không thẳng hàng.

A. Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

B. Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

C.Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

D. Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

Lời giải:

+ Đường thẳng AB: đi qua A(0;0; 2) và nhận vecto Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau làm vecto chỉ phương

+ Đường thẳng CD đi qua C( 2; 1; 3) và nhận vecto Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau làm vecto chỉ phương.

+ Hai đường thẳng AB và CD có hai vecto chỉ phương là cùng phương và điểm A không thuộc đường thẳng CD.

=> AB// CD nên d( AB; CD) = d( A; CD)

+ Ta có: Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

Chọn C.

Câu 8:

Trong không gian với hệ tọa độ Oxyz; cho điểm A(1; 1; 1) và đường thẳng Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau . Tìm m để khoảng cách từ A đến d là Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau ?

A. m= -1

B. m= 0

C. m= - 2

D. m= 1

Lời giải:

+ Đường thẳng d đi qua M( 1;2; 2) và có vecto chỉ phương Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

+ Ta có; Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

+ Theo đầu bài ta có: d( A; d)= Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

Chọn B.

Câu 9:

Trong không gian với hệ tọa độ Oxyz; cho điểm A(m; 0; 2) và đường thẳng Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau . Tìm m để khoảng cách từ A đến đường thẳng d là Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau ?

A. m= 2 hoặc m=1

B. m= -1 hoặc m= 0

C. m= 3 hoặc m= 0

D. m= - 4 hoặc m= -1

Lời giải:

+ Đường thẳng d đi qua M( 1; 2; - 1) và có vecto chỉ phương Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

+ Ta có: Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

+ Để khoảng cách từ A đến d là 2 thì:

Khoảng cách từ 1 điểm đến 1 đường thẳng; Khoảng cách giữa 2 đường thẳng chéo nhau

Chọn B.

D. Bài tập tự luyện

Bài 1. Tính khoảng cách từ điểm M(4; -3; 2) đến đường thẳng d có phương trình: x+23=y+22=z−1?

Bài 2. Tính khoảng cách từ điểm M đến đường thẳng d trong mỗi trường hợp sau:

a) M(2; 3; 1); d: x+21=y−12=z+12.

b) M(1; 0; 0); d: x−31=y−32=z−11.

Bài 3. Trong không gian tọa độ Oxyz cho đường thẳng (d): x−12=y+11=z−21 điểm M(−3; 1; 2). Khoảng cách từ điểm M đến đường thẳng d là?

Bài 4. Trong không gian với hệ tọa độ Oxyz, tính khoảng cách d từ điểm A(1; -2; 3) đến đường thẳng  Δ: x−105=y−21=z+21.

Bài 5. Tính khoảng cách từ điểm N(2; 3; –1) đến đường thẳng Δ đi qua điểm M0−12;0;−34và có vectơ chỉ phương u→=−4;2;−1.

Bài giảng: Các dạng bài về khoảng cách, góc trong không gian - Cô Nguyễn Phương Anh (Giáo viên VietJack)

(199k) Xem Khóa học Toán 12 KNTTXem Khóa học Toán 12 CDXem Khóa học Toán 12 CTST

Xem thêm các dạng bài tập Toán lớp 12 ôn thi Tốt nghiệp có lời giải hay khác:

  • Vị trí tương đối của đường thẳng và mặt phẳng
  • Vị trí tương đối của đường thẳng và mặt cầu
  • Hình chiếu của một điểm lên đường thẳng, mặt phẳng
  • Viết phương trình đường thẳng liên quan đến khoảng cách
  • Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng
👉 Giải bài nhanh với AI Hay:
  • HOT 500+ Đề thi thử tốt nghiệp THPT, ĐGNL các trường ĐH fle word có đáp án (2025).

Sách VietJack thi THPT quốc gia 2026 cho 2k8:

  • Sổ tay toán, lý, hóa, văn, sử, địa 12 (29k/ 1 cuốn)
  • Tổng ôn tốt nghiệp 12 toán, sử, địa, kinh tế pháp luật.... (80k/1 cuốn)
  • 30 đề Đánh giá năng lực đại học quốc gia Hà Nội, tp. Hồ Chí Minh 2026 (cho 2k8)

TÀI LIỆU FILE WORD DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 12

+ Bộ giáo án, đề thi tốt nghiệp THPT, DGNL các trường các trường có lời giải chi tiết 2025 tại https://tailieugiaovien.com.vn/

+ Hỗ trợ zalo: VietJack Official

+ Tổng đài hỗ trợ đăng ký : 084 283 45 85

500+ đề thi thử tốt nghiệp THPT Quốc gia form 2025

( 128 tài liệu )

100+ đề thi ĐGNL ĐHQG Hà Nội, Tp.Hồ Chí Minh...

( 84 tài liệu )

Đề thi giữa kì, cuối kì 12

( 143 tài liệu )

Bài giảng Powerpoint Văn, Sử, Địa 12....

( 31 tài liệu )

Chuyên đề dạy thêm Toán, Lí, Hóa ...12

( 104 tài liệu )

Đề thi HSG 12

( 4 tài liệu )

xem tất cả

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS. Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.

Trang trước Trang sau phuong-trinh-duong-thang-trong-khong-gian.jsp Giải bài tập lớp 12 sách mới các môn học
  • Giải Tiếng Anh 12 Global Success
  • Giải sgk Tiếng Anh 12 Smart World
  • Giải sgk Tiếng Anh 12 Friends Global
  • Lớp 12 Kết nối tri thức
  • Soạn văn 12 (hay nhất) - KNTT
  • Soạn văn 12 (ngắn nhất) - KNTT
  • Giải sgk Toán 12 - KNTT
  • Giải sgk Vật Lí 12 - KNTT
  • Giải sgk Hóa học 12 - KNTT
  • Giải sgk Sinh học 12 - KNTT
  • Giải sgk Lịch Sử 12 - KNTT
  • Giải sgk Địa Lí 12 - KNTT
  • Giải sgk Giáo dục KTPL 12 - KNTT
  • Giải sgk Tin học 12 - KNTT
  • Giải sgk Công nghệ 12 - KNTT
  • Giải sgk Hoạt động trải nghiệm 12 - KNTT
  • Giải sgk Giáo dục quốc phòng 12 - KNTT
  • Giải sgk Âm nhạc 12 - KNTT
  • Giải sgk Mĩ thuật 12 - KNTT
  • Lớp 12 Chân trời sáng tạo
  • Soạn văn 12 (hay nhất) - CTST
  • Soạn văn 12 (ngắn nhất) - CTST
  • Giải sgk Toán 12 - CTST
  • Giải sgk Vật Lí 12 - CTST
  • Giải sgk Hóa học 12 - CTST
  • Giải sgk Sinh học 12 - CTST
  • Giải sgk Lịch Sử 12 - CTST
  • Giải sgk Địa Lí 12 - CTST
  • Giải sgk Giáo dục KTPL 12 - CTST
  • Giải sgk Tin học 12 - CTST
  • Giải sgk Hoạt động trải nghiệm 12 - CTST
  • Giải sgk Âm nhạc 12 - CTST
  • Lớp 12 Cánh diều
  • Soạn văn 12 Cánh diều (hay nhất)
  • Soạn văn 12 Cánh diều (ngắn nhất)
  • Giải sgk Toán 12 Cánh diều
  • Giải sgk Vật Lí 12 - Cánh diều
  • Giải sgk Hóa học 12 - Cánh diều
  • Giải sgk Sinh học 12 - Cánh diều
  • Giải sgk Lịch Sử 12 - Cánh diều
  • Giải sgk Địa Lí 12 - Cánh diều
  • Giải sgk Giáo dục KTPL 12 - Cánh diều
  • Giải sgk Tin học 12 - Cánh diều
  • Giải sgk Công nghệ 12 - Cánh diều
  • Giải sgk Hoạt động trải nghiệm 12 - Cánh diều
  • Giải sgk Giáo dục quốc phòng 12 - Cánh diều
  • Giải sgk Âm nhạc 12 - Cánh diều

Từ khóa » Khoảng Cách Từ điểm Tới đường Thẳng Oxyz