Khối đa Diện Lồi - Khối đa Diện đều - Tài Liệu Text - 123doc

Tải bản đầy đủ (.pdf) (5 trang)
  1. Trang chủ
  2. >>
  3. Khoa Học Tự Nhiên
  4. >>
  5. Toán học
Khối đa diện lồi - Khối đa diện đều

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (186.41 KB, 5 trang )

Ngày soạn:.......................... Tiết 4 § 2 : KHỐI ĐA DIỆN LỒI – KHỐI ĐA DIỆN ĐỀU A- Mục tiêu bài dạy : 1- Kiến thức : khái niệm về khối đa diệnlồi và khối đa diện đều, nhận biết năm loại khối đa diện đều. 2- Kỹ năng: nhận biết khối đa diệnlồi và khối đa diện đều, biết cách nhận biết năm loại khối đa diện đều, chứng minh được một số tính chất của khối đa diện đều. 3- Thái độ: tích cực xây dựng bài, chủ động chiếm lĩnh kiến thức theo sự hướng dẫn của Gv, năng động, sáng tạo trong quá trình tiếp cận tri thức mới, thấy được lợi ích của toán học trong đời sống B- Chuẩn bị (phương tiện dạy học) : 1- Giáo viên : Giáo án , đồ dùng dạy học 2- Học sinh : Sgk, xem trước bài ở nhà C- Tiến trình bài dạy : I- Ổn định lớp. II- Kiểm tra bài cũ: Vẽ một khối lập phương và chia khối đó thành 6 khối tứ diện III- Dạy học bài mới : 1- Đặt vấn đề chuyển tiếp vào bài mới : 2- Dạy bài mới : Hoạt động của giáo viên và học sinh Ghi bảng Hoạt động 1 : Khối đa diện đa diện lồi - Em hãy tìm ví dụ về khối đa diện lồi và khối đa diện không lồi trong thực tế. GV phát biểu định nghĩa và giải thích. - HS cho thêm ví dụ về khối đa diện lồi và khối đa diện không lồi. - Hs thảo luận nhóm để tìm ví dụ về khối đa diện lồi và khối đa diện không lồi trong thực tế. - GV nhận định và kết luận I. Khối đa diện lồi Khối đa diện (H) được gọi là khối đa diện lồi nếu đoạn thẳng nối hai điểm bất kỳ của (H) luôn thuộc (H). Khi đó đa diện xác định (H) được gọi là đa diện lồi. Một khối đa diện là khối đa diện lồi khi và chỉ khi miền trong của nó luôn nằm về một phía đối với mỗi mặt phẳng chứa một mặt của nó. Hình sau đây không là một khối đa diện lồi. II. Khối Đa Diện Đều 1. Định nghĩa : Khối đa diện đều là khối đa diện lồi có tính chất sau đây : a. Mỗi mặt của nó là một đa giác đều p cạnh. b. Mỗi đỉnh của nó là đỉnh chung của đúng q mặt. Khối đa diện đều như vậy được gọi là khối đa diện đều loại {p ; q} Nhận xét: Các mặt của khối đa diện đều là những đa giác đều bằng nhau. 2. Định lý : Chỉ có năm loại đa diện đều. Đó là các loại : Bảng tóm tắt của năm loại khối đa diện đều : Loại Tên gọi Số đỉnh Số cạnh Số mặt {3 ; 3} {4 ; 3} {3 ; 4} {5 ; 3} {3 ; 5}Tứ diện đều Lập phương Bát diện đều Mười hai mặt đều Hai mươi mặt đều 4 8 6 20 12 6 12 Hoạt động 2 : Khối đa diện lồi - Cho hãy đếm số đỉnh, số cạnh của một khối bát diện đều. - Hs thảo luận nhóm để đếm số đỉnh, số cạnh của một khối bát diện đều. 12 30 30 4 6 8 12 20 Hoạt động của giáo viên và học sinh Ghi bảng II. Khối Đa Diện Đều3. Ví dụ : Chứng minh rằng a. Trung điểm các cạnh của một tứ diện đều là các đỉnh của một bát diện đều. b. Tâm các mặt của một hình lập Hoạt động 1 : Củng cố tính chất của tứ diện đều và bát diện đều * GV : - Cho HS hoạt động theo nhóm chứng minh 8 tam giác IEF, IFM, IMN, INE, JEF, JFM, JMN, JNE là những tam giác đều cạnh bằng 2a. - Gọi HS trình bày - GV kịp thời chỉnh sửa cho học sinh * HS : - Thảo luận nhóm để chứng minh 8 tam giác IEF, IFM, IMN, INE, JEF, JFM, JMN, JNE là những tam giác đều cạnh bằng 2a. Hoạt động 2 : Củng cố tính chất của hình lập phương và bát diện đều * GV : - Cho HS hoạt động theo nhóm chứng minh AB’CD’ là một hình tứ diện đều và tính các cạnh của nó theo a - Gọi HS trình bày - GV kịp thời chỉnh sửa cho học sinh * HS : - Thảo luận nhóm để chứng minh AB’CD’ là một hình tứ diện đều và tính các cạnh của nó theo a phương là các đỉnh của một bát diện đều. Giải : a. Cho tứ diện đều ABCD cạnh a. Gọi M, N , P , Q , R , S lần lượt là trung điểm các cạnh AC , BD , AB , BC , CD , DA.Nối các trung điểm ta được một hình bát diện MNPQRS, trong đó các mặt của của nó là các tam giác đều và mỗi đĩnh của nó là đỉnh chung của đúng 4 tam giác đều vậy đa diện ấy chính là bát diện đều. b. Sáu tâm cũng chính là 6 trung điểm của tứ diện đều AB’CD’ nên theo câu a đa diện ấy chính là bát diện đều. ••••••IV- Củng cố, khắc sâu kiến thức ( 3 phút) : Nhắc lại khái niệm các khối đa diện đều V- Hướng dẫn học tập ở nhà ( 2 phút) : 3, 4 SGK trang 18. D- Rút kinh nghiệm : Ngày soạn:.................. Tiết 5 BÀI TẬP I- Ổn định tổ chức ( 1 phút) : Kiểm tra sĩ số, tình hình chuẩn bị bài học của học sinh. II- Kiểm tra bài cũ ( 9 phút) : Vẽ hình tứ diện đều ABCD và xác định tâm của các mặt của nó III- Dạy học bài mới ( 30 phút) : 3- Đặt vấn đề chuyển tiếp vào bài mới : 4- Dạy bài mới : Hoạt động của giáo viên và học sinh Ghi bảng Hoạt động 1 : Củng cố về tính chất của hình tứ diện đều Bài 3 SGK / 18 : Chứng minh rằng tâm của các mặt của hình tứ diện đều là các đỉnh của một hình tứ diện đều * GV : Gọi ( H ) là hình tứ diện đều cạnh a. Tâm của ( H ) tạo thành một hình tứ diện ( H- Vẽ tứ diện đều ABCD và xác định tâm của các mặt - Cho HS hoạt động theo nhóm tính khoảng cách giữa hai tâm của hai mặt theo a a3’ ) có sáu cạnh đều bằng Bài 4 SGK / 18 : Cho hình bát diện đều ABCDEF. - Gọi HS trình bày Chứng minh rằng : - GV kịp thời chỉnh sửa cho học sinh a) Các đoạn thẳng AF, BD, CE đôi một vuông góc và cắt nhau tại trung điểm mỗi đường * HS : - Thảo luận nhóm để tính khoảng cách giữa hai tâm của hai mặt theo a b) ABFFD, AEFC, BCDE là những hình vuông Hoạt động 2 : Củng cố về tính chất của hình bát diện đều a) Do B,C,D,E cách đều A và F nên chúng cùng * GV : - Vẽ bát diện đều ABCDF thuộc mặt phẳng trung trực của đoạn thẳng AF. - Cho HS hoạt động theo nhóm chứng minh a) Tương tự A,B,F,D cùng thuộc một mặt phẳng và A,C,F,E cũng cùng thuộc một mặt phẳng - Gọi HS trình bày - GV kịp thời chỉnh sửa cho học sinh * HS : - Thảo luận nhóm chứng minh a) Gọi . AF (BCDE) I∩ = Khi đó : B,I,D là những điểm chung của hai mặt phẳng (BCDE) và (ABFD) nên chúng thẳng hàng. Tương tự : A,I,F là những điểm chung của hai mặt phẳng (ABFD) và (AEFC) nên chúng thẳng hàng. C,I,E là những điểm chung của hai mặt phẳng (BCDE) và (AEFC) nên chúng thẳng hàng. Vậy AF,BD,CE đồng quy tại I BCDE là hình thoi nên BD vuông góc với EC tại I là trung điểm của mỗi đường. I là trung điểm của AF và AF vuông góc với BD và EC. Do đó AF,BD,CE đôi một vuông góc với nhau và cắt nhau tại trung điểm mỗi đường b) Do AI (BCDE) ; AB AC AD AE⊥ === nên : IB = IC = ID = IE . Từ đó suy ra BCDE là hình vuông. Tương tự ABFD, AEFC là những hình vuông IV- Củng cố, khắc sâu kiến thức : ( 3 phút) - Nhắc lại khái niệm khối đa diện đều - Và một số tính chất hình tứ diện đều và hình bát diện đều V- Hướng dẫn học tập ở nhà ( 2 phút) : - Giải lại các bài đã giải tại lớp và accs bài còn lại trong SGK - Xem trước bài khái niệm về thể tích của khối đa diện

Tài liệu liên quan

  • ly thuyet Khoi da dien loi & Khoi da dien deu ly thuyet Khoi da dien loi & Khoi da dien deu
    • 22
    • 727
    • 0
  • Khối đa diện lồi - Khối đa diện đều Khối đa diện lồi - Khối đa diện đều
    • 5
    • 2
    • 4
  • Khối đa diện lồi khối đa diện đều pdf Khối đa diện lồi khối đa diện đều pdf
    • 31
    • 1
    • 5
  • Khoi da dien loi-da dien deu(ST) Khoi da dien loi-da dien deu(ST)
    • 22
    • 634
    • 1
  • khoi da dien loi - khoi da dien deu khoi da dien loi - khoi da dien deu
    • 21
    • 570
    • 0
  • Giáo án đại số 12: BÀI TẬP PHÉP VỊ TỰ VÀ SỰ ĐỒNG DẠNG CỦA CÁC KHỐI ĐA DIỆN - CÁC KHỐI ĐA DIỆN ĐỀU doc Giáo án đại số 12: BÀI TẬP PHÉP VỊ TỰ VÀ SỰ ĐỒNG DẠNG CỦA CÁC KHỐI ĐA DIỆN - CÁC KHỐI ĐA DIỆN ĐỀU doc
    • 9
    • 716
    • 3
  • Giáo án đại số 12: ĐỒNG DẠNG PHÉP VỊ TỰ VÀ SỰ CỦA CÁC KHỐI ĐA DIỆN.CÁC KHỐI ĐA DIỆN ĐỀU (2 Tiết) ppsx Giáo án đại số 12: ĐỒNG DẠNG PHÉP VỊ TỰ VÀ SỰ CỦA CÁC KHỐI ĐA DIỆN.CÁC KHỐI ĐA DIỆN ĐỀU (2 Tiết) ppsx
    • 9
    • 461
    • 0
  • PHÉP VỊ TỰ VÀ SỰ ĐỒNG DẠNG CỦA CÁC KHỐI ĐA DIỆN - CÁC KHỐI ĐA DIỆN ĐỀU docx PHÉP VỊ TỰ VÀ SỰ ĐỒNG DẠNG CỦA CÁC KHỐI ĐA DIỆN - CÁC KHỐI ĐA DIỆN ĐỀU docx
    • 5
    • 416
    • 0
  • PHÉP VỊ TỰ VÀ SỰ ĐỒNG DẠNG CÁC KHỐI ĐA DIỆN - CÁC KHỐI ĐA DIỆN ĐỀU (2 pps PHÉP VỊ TỰ VÀ SỰ ĐỒNG DẠNG CÁC KHỐI ĐA DIỆN - CÁC KHỐI ĐA DIỆN ĐỀU (2 pps
    • 5
    • 372
    • 0
  • Giáo án Toán 12 ban cơ bản : Tên bài dạy : BÀI TẬP KHÔÍ ĐA DIỆN LỒI VÀ KHỐI ĐA DIỆN ĐỀU pdf Giáo án Toán 12 ban cơ bản : Tên bài dạy : BÀI TẬP KHÔÍ ĐA DIỆN LỒI VÀ KHỐI ĐA DIỆN ĐỀU pdf
    • 10
    • 468
    • 0

Tài liệu bạn tìm kiếm đã sẵn sàng tải về

(186.41 KB - 5 trang) - Khối đa diện lồi - Khối đa diện đều Tải bản đầy đủ ngay ×

Từ khóa » Các Khối đa Diện Lồi Trong Thực Tế