[LỜI GIẢI] Cho Hình Chóp S.ABC Có đáy ABC Là Tam Giác đều Cạnh A ...

KHỞI ĐỘNG CHO MÙA THI ĐẠI HỌC 2026

Ôn đúng trọng tâm – Học chắc từ hôm nay

BẮT ĐẦU NGAY Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a cạnh bên SA vuông góc với đáy đường thẳng SB t Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a cạnh bên SA vuông góc với đáy đường thẳng SB t

Câu hỏi

Nhận biết

Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác đều cạnh \(a\), cạnh bên \(SA\) vuông góc với đáy, đường thẳng \(SB\) tạo với đáy một góc \({60^0}\). Thể tích của khối chóp \(S.ABC\) bằng:

A. \(\dfrac{{{a^3}}}{8}\) B. \(\dfrac{{{a^3}}}{4}\) C. \(\dfrac{{{a^3}}}{2}\) D. \(\dfrac{{3{a^3}}}{4}\)

Đáp án đúng: B

Lời giải của Tự Học 365

Giải chi tiết:

Ta có \(SA \bot \left( {ABC} \right) \Rightarrow AB\) là hình chiếu của \(SB\) lên \(\left( {ABC} \right)\).

\( \Rightarrow \angle \left( {SB;\left( {ABC} \right)} \right) = \angle \left( {SB;AB} \right) = \angle SBA = {60^0}\).

Trong tam giác vuông \(SAB:\,\,SA = AB.\tan {60^0} = a\sqrt 3 \).

Vậy \({V_{S.ABC}} = \dfrac{1}{3}SA.{S_{\Delta ABC}} = \dfrac{1}{3}.a\sqrt 3 .\dfrac{{{a^2}\sqrt 3 }}{4} = \dfrac{{{a^3}}}{4}\).

Chọn B

Ý kiến của bạn Hủy

Luyện tập

Câu hỏi liên quan

  • Giải phương trình (1 – i)z + (2 – i) = 4 – 5i trên tập số ph

    Giải phương trình (1 – i)z + (2 – i) = 4 – 5i trên tập số phức. 

    Chi tiết
  • Giải phương trình : z<sup>3</sup> + i = 0

    Giải phương trình : z3 + i = 0

    Chi tiết
  • Giải phương trình 3<sup>1 – x</sup> – 3<sup>x</sup> + 2 = 0.

    Giải phương trình 31 – x – 3x + 2 = 0.

    Chi tiết
  • câu 2 

    câu 2 

    Chi tiết
  • Giải phương trình 7<sup>2x + 1</sup> – 8.7<sup>x</sup> + 1 =

    Giải phương trình 72x + 1 – 8.7x + 1 = 0.

    Chi tiết
  • Câu 2: Đề thi thử THPT Hà Trung - Thanh Hóa

    Câu 2: Đề thi thử THPT Hà Trung - Thanh Hóa

    Chi tiết
  • Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y

    Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d: = = và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình  mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.

    Chi tiết
  • Giải phương trình: (sin2x + cos2x)cosx + 2cos2x - sinx = 0

    Giải phương trình: (sin2x + cos2x)cosx + 2cos2x - sinx = 0

    Chi tiết
  • Tìm số nguyên dương n nhỏ nhất sao cho z<sub>1 </sub>=

    Tìm số nguyên dương n nhỏ nhất sao cho z1 = là số thực và z2 = là số ảo.

    Chi tiết
  • câu 7 

    câu 7 

    Chi tiết

Đăng ký

Năm sinh 20012002200320042005200620072008200920102011201220132014201520162017201820192020 hoặc Đăng nhập nhanh bằng: đăng nhập bằng google (*) Khi bấm vào đăng ký tài khoản, bạn chắc chắn đã đoc và đồng ý với Chính sách bảo mật và Điều khoản dịch vụ của Tự Học 365.

Từ khóa » Cho Hình Chóp Sabc Có đáy Tam Giác đều Cạnh A