[LỜI GIẢI] Giá Trị Của Tổng Sn = 1^2 + 2^2 + ... + N^2 Là
Có thể bạn quan tâm
Ôn đúng trọng tâm – Học chắc từ hôm nay
BẮT ĐẦU NGAY
Câu hỏi
Nhận biếtGiá trị của tổng \({S_n} = {1^2} + {2^2} + ... + {n^2} \) là:
A. \({{n\left( {n + 1} \right)\left( {n + 2} \right)} \over 6}\) B. \({{n\left( {n + 2} \right)\left( {2n + 1} \right)} \over 6}\) C. \({{n\left( {n + 1} \right)\left( {2n + 1} \right)} \over 6}\) D. Đáp án khác.Đáp án đúng: C
Lời giải của Tự Học 365
Giải chi tiết:
Với n = 1 ta có \({S_1} = {1^2} = 1 = {{1\left( {1 + 1} \right)\left( {2.1 + 1} \right)} \over 6}\)
Với n = 2 ta có \({S_2} = {1^2} + {2^2} = 5 = {{2\left( {2 + 1} \right)\left( {2.2 + 1} \right)} \over 6}\)
Với n = 3 ta có \({S_3} = {1^2} + {2^2} + {3^2} = 14 = {{3\left( {3 + 1} \right)\left( {2.3 + 1} \right)} \over 6}\)
Dự đoán \({S_n} = {{n\left( {n + 1} \right)\left( {2n + 1} \right)} \over 6}\,\,\left( * \right)\), ta sẽ chứng minh đẳng thức (*) đúng bằng phương pháp quy nạp.
Với n = 1 thì (*) đúng.
Giả sử (*) đúng đến n = k, tức là \({S_k} = {1^2} + {2^2} + ... + {k^2} = {{k\left( {k + 1} \right)\left( {2k + 1} \right)} \over 6}\), ta chứng minh (*) đúng đến n = k + 1, tức là cần chứng minh \({S_{k + 1}} = {1^2} + {2^2} + ... + {\left( {k + 1} \right)^2} = {{\left( {k + 1} \right)\left( {\left( {k + 1} \right) + 1} \right)\left( {2\left( {k + 1} \right) + 1} \right)} \over 6}\).
Ta có:
\(\eqalign{ & {S_{k + 1}} = {1^2} + {2^2} + ... + {k^2} + {\left( {k + 1} \right)^2} = {{k\left( {k + 1} \right)\left( {2k + 1} \right)} \over 6} + {\left( {k + 1} \right)^2} \cr & = {{\left( {k + 1} \right)\left( {2{k^2} + k + 6k + 6} \right)} \over 6} = {{\left( {k + 1} \right)\left( {2{k^2} + 7k + 6} \right)} \over 6} = {{\left( {k + 1} \right)\left( {k + 2} \right)\left( {2k + 3} \right)} \over 6} = {{\left( {k + 1} \right)\left( {\left( {k + 1} \right) + 1} \right)\left( {2\left( {k + 1} \right) + 1} \right)} \over 6} \cr} \).
Vậy (*) đúng với mọi n.
Chọn C.
Ý kiến của bạn Hủy
Luyện tập
Câu hỏi liên quan
-
Chi tiết
-
Chi tiết
-
Chi tiết
-
Chi tiết
-
Chi tiết
-
Chi tiết
-
Chi tiết
-
Chi tiết
-
Chi tiết
-
Chi tiết
Đăng ký
Năm sinh 20012002200320042005200620072008200920102011201220132014201520162017201820192020 hoặc Đăng nhập nhanh bằng:
(*) Khi bấm vào đăng ký tài khoản, bạn chắc chắn đã đoc và đồng ý với Chính sách bảo mật và Điều khoản dịch vụ của Tự Học 365. Từ khóa » Tính Tổng Sn=1-2+3-4
-
Giá Trị Của Tổng S = 1-2 + 3-4 +
-
Giá Trị Của Tổng S = 1 - 2 + 3 - 4 + - Khóa Học
-
Tính Tổng S=1-2+3-4+5-...+(2n-1)-2n Với $n \ge 1$ Và $n \in N$.
-
Tính Sn = 1 - 2 +3 - 4 +........+ (-1)n-1nTính Tổng S2000 +S2001 - Olm
-
Tính Tổng S(n) = 1+2+3+4+ … +n | VnCoding
-
Tính Tổng Sn= 1^3 - 2^3 + 3^3 - 4^3 + ..+ (2n+1 ... - Diễn đàn Toán Học
-
Tính Tổng $S= 1^3 + 2^3 + 3^3 +....+ N^3 - Diễn đàn Toán Học
-
Tính S(n) = 1/2 + 2/3 + 3/4 + …. + N / (n + 1) Bằng C / C++ - Freetuts
-
1. Bài Tập Tính Tổng S(n) = 1+ 2 + 3 + … + N - Lập Trình Từ Đầu
-
Tính Tổng :Sn = 1 / 1.2.3 + 1 - Hoc24
-
4 + . . . + (-1)^n-1 . N Với N = 1 , 2 , 3 , . . . Tính S35 + S60 - Pitago.Vn
-
Tài Liệu Bồi Dưỡng Toán Lớp 6 - Dãy Số Có Quy Luật