[LỜI GIẢI] Số Nghiệm Nguyên Của Hệ Bất Phương Trình L2x + 1 > 3x - X

LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY XEM CHI TIẾT Số nghiệm nguyên của hệ bất phương trình l2x + 1 > 3x - 2 - x - 3 < 0 . là: Số nghiệm nguyên của hệ bất phương trình l2x + 1 > 3x - 2 - x - 3 < 0 . là:

Câu hỏi

Nhận biết

Số nghiệm nguyên của hệ bất phương trình \(\left\{ \begin{array}{l}2x + 1 > 3x - 2\\ - x - 3 < 0\end{array} \right.\) là:

A. \(9\) B. \(7\) C. \(5\) D. vô số

Đáp án đúng: C

Lời giải của Tự Học 365

Giải chi tiết:

\(\left\{ \begin{array}{l}2x + 1 > 3x - 2\\ - x - 3 < 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x < 3\\x > - 3\end{array} \right. \Rightarrow - 3 < x < 3\)

Lại có \(x \in \mathbb{Z} \Rightarrow x \in \left\{ { - 2;\,\, - 1;\,\,0;\,\,1;\,\,2} \right\}.\)

Vậy có 5 nghiệm nguyên của hệ BPT

Chọn C.

Ý kiến của bạn Hủy

Δ

Luyện tập

Câu hỏi liên quan

  • TÌm a để 3 đường thẳng sau đây đồng qui: y=2x ; y= -x-3 ; y

    TÌm a để 3 đường thẳng sau đây đồng qui:

    y=2x ; y= -x-3 ; y= ax + 5

    Chi tiết
  • Định m sao cho : (m+1)x<sup>2</sup> – 2(m+1)x + 4 > 0 ; x ε

    Định m sao cho : (m+1)x2 – 2(m+1)x + 4 > 0 ; x ε R  (1)

    Chi tiết
  • Định m sao cho : x<sup>2</sup> – (3m – 2)x + 2m<sup>2</sup>

    Định m sao cho : x2 – (3m – 2)x + 2m2 – 5m – 2 > 0 ; x ε R

    Chi tiết
  • Định m để  f(x) = mx<sup>2</sup> – mx – 5 < 0 với x ε R   (1

    Định m để  f(x) = mx2 – mx – 5 < 0 với x ε R   (1)

    Chi tiết
  • Định m để f(x) = mx<sup>2</sup> – 2(m+1)x – m + 5 > 0 với x

    Định m để f(x) = mx2 – 2(m+1)x – m + 5 > 0 với x < 1

    Chi tiết
  • Giải Bất phương trình sau : 2x(3x-5) > 0

    Giải Bất phương trình sau :

    2x(3x-5) > 0

    Chi tiết
  • Khảo sát và vẽ đồ thị của hàm số :  1)y = 2|x| 2) y = 3√x

    Khảo sát và vẽ đồ thị của hàm số : 

    1)y = 2|x|

    2) y = 3√x

    Chi tiết
  • Định m để  f(x) = mx<sup>2</sup> – mx + m + 3 ≥ 0 với x ε R 

    Định m để  f(x) = mx2 – mx + m + 3 ≥ 0 với x ε R 

    Chi tiết
  • Định m sao cho : mx<sup>2</sup> – 10x – 5 ≤ 0 ; x ε R  (1)

    Định m sao cho : mx2 – 10x – 5 ≤ 0 ; x ε R  (1)

    Chi tiết
  • Định m để f(x) = x<sup>2</sup> – 2mx – m ≥ 0 với x > 0     

    Định m để f(x) = x2 – 2mx – m ≥ 0 với x > 0           

    Chi tiết

Đăng ký

Năm sinh 20012002200320042005200620072008200920102011201220132014201520162017201820192020 hoặc Đăng nhập nhanh bằng: đăng nhập bằng google (*) Khi bấm vào đăng ký tài khoản, bạn chắc chắn đã đoc và đồng ý với Chính sách bảo mật và Điều khoản dịch vụ của Tự Học 365.

Từ khóa » Hệ Bất Phương Trình Có Số Nghiệm Nguyên Là