[LỜI GIẢI] Tính đạo Hàm Của Hàm Sốy = ( X^2 + 1 )ln X - Tự Học 365

LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY XEM CHI TIẾT Tính đạo hàm của hàm sốy = ( x^2 + 1 )ln x Tính đạo hàm của hàm sốy = ( x^2 + 1 )ln x

Câu hỏi

Nhận biết

Tính đạo hàm của hàm số\(y = \left( {{x^2} + 1} \right)\ln x\)

A. \(y' = \dfrac{{1 + {x^2}\left( {1 + 2\ln {\rm{x}}} \right)}}{x}\) B. \(y' = 2x + \dfrac{1}{x}\) C. \(y' = \dfrac{{1 + {x^2}\left( {1 - 2\ln {\rm{x}}} \right)}}{x}\) D. \(y' = x\ln {\rm{x}} + \dfrac{{{x^2} + 1}}{x}\)

Đáp án đúng: A

Lời giải của Tự Học 365

Giải chi tiết:

\(\begin{array}{l}y' = \left( {{x^2} + 1} \right)'.\ln x + \left( {{x^2} + 1} \right).\dfrac{1}{x} = 2.x.\ln x + \dfrac{{{x^2} + 1}}{x}\\\,\,\,\,\,\,\, = \dfrac{{2.{x^2}.lnx + {x^2} + 1}}{x} = \dfrac{{1 + {x^2}.\left( {1 + 2\ln x} \right)}}{x}.\end{array}\)

Chọn A

Ý kiến của bạn Hủy

Δ

Luyện tập

Câu hỏi liên quan

  • Giải phương trình : z<sup>3</sup> + i = 0

    Giải phương trình : z3 + i = 0

    Chi tiết
  • Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y

    Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d: = = và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình  mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.

    Chi tiết
  • câu 2 

    câu 2 

    Chi tiết
  • Giải phương trình: (sin2x + cos2x)cosx + 2cos2x - sinx = 0

    Giải phương trình: (sin2x + cos2x)cosx + 2cos2x - sinx = 0

    Chi tiết
  • Câu 2: Đề thi thử THPT Hà Trung - Thanh Hóa

    Câu 2: Đề thi thử THPT Hà Trung - Thanh Hóa

    Chi tiết
  • Giải phương trình 7<sup>2x + 1</sup> – 8.7<sup>x</sup> + 1 =

    Giải phương trình 72x + 1 – 8.7x + 1 = 0.

    Chi tiết
  • Giải phương trình (1 – i)z + (2 – i) = 4 – 5i trên tập số ph

    Giải phương trình (1 – i)z + (2 – i) = 4 – 5i trên tập số phức. 

    Chi tiết
  • Giải phương trình 3<sup>1 – x</sup> – 3<sup>x</sup> + 2 = 0.

    Giải phương trình 31 – x – 3x + 2 = 0.

    Chi tiết
  • câu 7 

    câu 7 

    Chi tiết
  • Tìm số nguyên dương n nhỏ nhất sao cho z<sub>1 </sub>=

    Tìm số nguyên dương n nhỏ nhất sao cho z1 = là số thực và z2 = là số ảo.

    Chi tiết

Đăng ký

Năm sinh 20012002200320042005200620072008200920102011201220132014201520162017201820192020 hoặc Đăng nhập nhanh bằng: đăng nhập bằng google (*) Khi bấm vào đăng ký tài khoản, bạn chắc chắn đã đoc và đồng ý với Chính sách bảo mật và Điều khoản dịch vụ của Tự Học 365.

Từ khóa » đạo Hàm Ln(x 2+1)