LUYỆN TẬP ĐỐI XỨNG TÂM
Có thể bạn quan tâm
LUYỆN TẬP ĐỐI XỨNG TÂM
A. Lý thuyết
1. Hai điểm đối xứng qua một điểm
Hai điểm gọi đối xứng với nhau qua điểm O nếu O là trung điểm của đoạn thẳng nối hai điểm đó.
![]()
A và A’ đối xứng nhau qua O ⇔{A,O,A′thẳnghàngOA′=OA">⇔A,O,A′ thẳnghàng và OA′=OA
2. Hai hình đối xứng qua một điểm
Hai hình gọi là đối xứng với nhau qua điểm O nếu mỗi điểm của hình này đối xứng với một điểm thuộc hình kia qua điểm O và ngược lại.

Tính chất:
Nếu hai đoạn thẳng AB và A’B’ có các điểm A và A’, B và B’ đối xứng với nhau qua điểm O thì:
– AB = A’B’
– AB và A’B’ đối xứng với nhau qua O.
Chú ý: Trong đối xứng tâm:
– Hình đối xứng với một đường thẳng là một đường thẳng song song với nó.
– Hình đối xứng của một góc là một góc bằng nó.
– Hình đối xứng của một tam giác là một tam giác bằng nó.
– Hình đối xứng của một đường tròn là một đường tròn bằng nó.
3. Hình có tâm đối xứng
Điểm O gọi là tâm đối xứng của hình H nếu điểm đối xứng với mỗi điểm thuộc hình H qua điểm O cũng thuộc hình H.

Một vài hình có tâm đối xứng quen thuộc:
– Đường tròn có tâm đối xứng là tâm của nó
– Hình bình hành có tâm đối xứng là giao điểm của hai đường chéo.
Định lí:
Giao điểm hai đường chéo của hình bình hành là tâm đối xứng của hình bình hành đó.
B. Bài tập
Câu 1: Cho hình vẽ, trong đó ABCD là hình bình hành. Chứng minh rằng điểm M đối xứng với điểm N qua điểm C.
Lời giải:
Tứ giác ABCD là hình bình hành:
⇒ AB // CD hay BM // CD
Xét tứ giác BMCD ta có:
BM // CD
BM = CD (gt)
Suy ra: Tứ giác BMCD là hình bình hành (vì có một cặp cạnh đối song song và bằng nhau)
⇒ MC // BD và MC = BD (1)
AD // BC (gt) haỵ DN // BC
Xét tứ giác BCND ta có: DN // BC và DN = BC (vì cùng bằng AD)
Suy ra: Tứ giác BCND là hình bình hành (vì có một cặp cạnh đối song song và bằng nhau)
⇒ CN // BD và CN = BD (2)
Từ (1) và (2) suy ra: M, C, N thẳng hàng và MC = CN.
Câu 2: Cho hình vẽ trong đó DE // AB, DF // AC.Chứng minh rằng điểm E đối xứng với điểm F qua điểm I.
Lời giải:

Ta có: DE //AB (gt) hay DE //AF
DF //AC (gt) hay DF //AE
Tứ giác AEDF là hình bình hành.
I là trung điểm của AD nên EF đi qua trung điểm I là IE = IP (tính chất hình bình hành)
Vậy E và F đối xứng qua tâm I.
Câu 3: Cho tam giác ABC, các đường trung tuyến BM, CN. Gọi D là điểm đối xứng với B qua M, gọi E là điểm đối xứng Với C qua N. Chứng minh rằng điểm D đối xứng với điểm E qua điểm A.
Lời giải:

* Xét tứ giác ABCD, ta có:
MA = MC (gt)
MB = MD (định nghĩa đối xứng tâm)
Suy ra: Tứ giác ABCD là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm của mỗi đường)
⇒ AD // BC hay AD = BC (1)
* Xét tứ giác ACBE, ta có:
AN = NB (gt)
NC = NE (định nghĩa đối xứng tâm)
Suy ra: Tứ giác ACBE là hình bình hành (vì có 2 đường chéo cắt nhau tại trung điểm của mỗi đường) ⇒ AE // BC và AE = BC (2)
Từ (1) và (2) suy ra: A, D, E thẳng hàng và AD = AE
Nên A là trung điểm của DE hay điểm D đối xứng với điểm E qua điểm A.
Câu 4: Cho tam giác ABC vuông tại A, điểm D thuộc cạnh BC. Gọi E là điểm đối xứng với D qua AB, gọi F là điểm đối xứng với D qua AC. Chứng minh rằng các điểm E và F đối xứng với nhau qua điểm A.
Lời giải:

* Vì E đối xứng với D qua AB
⇒ AB là đường trung trực của đoạn thẳng DE
⇒ AD = AE (tỉnh chất đường trung trực)
Nên ΔADE cân tại A
Suy ra: AB là đường phân giác của ∠(DAE) ⇒ ∠A1= ∠A2
* Vì F đối xứng với D qua AC
⇒ AC là đường trung trực của đoạn thẳng DF
⇒ AD = AF (tính chất đường trung trực)
Nên ΔADF cân tại A
Suy ra: AC là phân giác của ∠(DAF)
⇒ ∠A3= ∠A4
∠(EAF) = ∠(EAD) + ∠(DAF) = ∠A1+ ∠A2+ ∠A3+ ∠A4= 2(∠A1+ ∠A3) = 2.90o= 180o
⇒ E, A, F thẳng hàng có AE = AF = AD
Nên A là trung điểm của EF hay điểm E đối xứng với điểm F qua điểm A.
Câu 5: Cho hình bình hành ABCD, O là giao điểm của hai đường chéo. Một đường thẳng đi qua O cắt các cạnh đối AD, BC ở E, F. Chứng minh E và F đối xứng với nhau qua điểm O.
Lời giải:

Xét ΔOED và ΔOFB, ta có:
∠(EOD)= ∠(FOB)(đối đỉnh)
OD = OB (tính chất hình bình hành)
∠(ODE)= ∠(OBF)(so le trong)
Do đó: ΔOED = ΔOFB (g.c.g)
⇒ OE = OF
Vậy O là trung điểm của EF hay điểm E đối xứng với điểm F qua điểm O
Câu 6: Cho hình bên, trong đó ABCD là hình bình hành. Chứng minh H và K đối xứng với nhau qua điểm O
Lời giải:

Xét hại tam giác vuông AHO và CKO, ta có:
∠(AHO)= ∠(CKO)= 90o
OA = OC (tính chất hình bình hành)
∠(AOH)= ∠(COK)(đối đỉnh)
Suy ra: ΔAHO = ΔCKO (cạnh huyền, góc nhọn)
⇒ OH = OK
Vậy O là trung điểm của HK hay điểm H đối xứng với điểm K qua điểm O
Câu 7: Cho tam giác ABC, D là trung điểm của AB, E là trung điểm của AC. Gọi O là một điểm bất kỳ nằm trong tam giác ABC. Vẽ điểm M đối xứng với O qua D. Vẽ điểm N đối xứng với O qua E. Chứng minh rằng MNCB là hình bình hành.
Lời giải:

* Xét tứ giác AOBM, ta có:
DA = DB (gt)
DO = DM (định nghĩa đối xứng tâm)
Suy ra: Tứ giác AOBM là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm của mỗi đường)
⇒ BM // AO và BM = AO (1)
* Xét tứ giác AOCN, ta có: EA = EC (gt)
EO = EN (định nghĩa đối xứng tâm)
Suy ra: Tứ giác AOBM là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm của mỗi đường)
⇒ CN // AO và CN = AO (2)
Từ (1) và (2) suy ra:BM // CN và BM = CN.
Vậy tứ giác BMNC là hình bình hành (vì có 1 cặp cạnh đối song song và bằng nhau).
Câu 8: Cho tam giácABC, các đường trungtuyến AD, BE, CF cắt nhau tại G. Gọi H là điểm đối xứng với G qua D, I là điểm đối xứng với G qua E, K là điểm đối xứng với G qua F. Tìm các điểm đối xứng với A, với B, với C qua G.
Lời giải:

* Ta có: GD = DH (tính chất đối xứng tâm)
⇒ GH = 2GD (l)
GA = 2GD (tính chất đường trung tuyến của tam giác) (2)
Từ (1) và (2) suy ra: GA = GH
Suy ra điểm đối xứng với điểm A qua tâm G là H.
* Ta có: GE = EI (tính chất đối xứng tâm)
⇒ GI = 2GB (3)
GB = 2GE (tính chất đường trung tuyên của tam giác) (4)
Từ (3) và (4) suy ra: GB = GI
Suy ra điểm đối xứng với điểm B qua tâm G là I.
GF = FK (tỉnh chất đối xứng tâm)
⇒ GK = 2GF (5)
GC = 2GF (tính chất đường trung tuyến của tam giác) (6)
Từ (5) và (6) Suy ra: GC = GK
Suy ra điểm đối xứng với điểm C qua tâm G là điểm K
Câu 9: Cho hình bình hành ABCD, O là giao điểm của hai đường chéo. Qua O kẻ đường thẳng cắt đường thẳng cắt hai cạnh AB, CD ở E, F. Qua O vẽ đường thẳng cắt hai cạnh AD, BC ở G, H. Chứng minh rằng EGFH là hình bình hành.
Lời giải:

* Xét ΔOAE và ΔOCF, ta có:
OA = OC (tính chất hình bình hành)
∠(AOE)= ∠(COF)(đối đỉnh)
∠(OAE)= ∠(OCF)(so le trong)
Do đó: ΔOAE = ΔOCF (g.c.g)
⇒ OE = OF (l)
* Xét ΔOAG và ΔOCH, ta có:
OA = OC (tính chất hình bình hành)
∠(AOG) = ∠(COH)(dối đỉnh)
∠(OAG) = ∠(OCH)(so le trong).
Do đó: ΔOAG = ΔOCH (g.c.g)
⇒ OG = OH (2)
Từ (1) và (2) suy ra tứ giác EGFH là hình bình hành (vì có 2 đường chéo cắt nhau tại trung điểm của mỗi đường).
Câu 10: Cho góc xOy, điểm A nằm trong góc đó. Vẽ điểm B đối xứng với A qua Ox, vẽ điểm G đối xứng với A qua Oy.
a, Chứng minh rằng OB = OC
b, Tính số đo góc xOy để B đối xứng với C qua O
Lời giải:

a, Vì B đối xứng với A qua trục Ox nên Ox là đường trung trực của đoạn AB.
⇒ OA = OB (tính chất đường trung trực) (1)
Vì C đối xứng với A qua trục Ọy nên Oy là đườngtrung trực của đoạn AC.
⇒ OA = OC (tỉnh chất đường trung trực) (2)
Từ (l) và (2) suy ra: OB = OC.
b, Vì OB = OC nên để điểm B đối xứng với C qua tâm O cần thêm điều kiện B, O, C thằng hàng
ΔOAB cân tại O có Ox là đường trung trực của AB nên Ox cũng là đường phân giác của ∠(AOB) ⇒ ∠O1= ∠O3
ΔOAC cân tại O có Oy là đường trung trực của AC nên Oy cũng là đường phân giác của ∠(AOC) ⇒ ∠O2= ∠O4
Vì B, O, C thẳng hàng nên:
∠O1+∠O2+∠O3+∠O4 = 180o ⇒ 2 ∠O1+ 2 ∠O2= 180o
⇒ ∠O1+∠O2= 90o ⇒ ∠(xOy) = 90o
Vậy ∠(xOy) = 90o thì B đối xứng với C qua tâm O
Từ khóa » Giải Các Bài Tập đối Xứng Tâm
-
Giải Toán 8 Bài 8: Đối Xứng Tâm
-
Giải Bài Tập SGK Toán Lớp 8 Bài 8: Đối Xứng Tâm
-
Toán 8 - Đối Xứng Tâm
-
Sách Giải Bài Tập Toán Lớp 8 Bài 8: Đối Xứng Tâm
-
Giải Một Số Bài Tập đối Xứng Tâm Hình Lớp 8 - Giáo Viên Việt Nam
-
Soạn Toán 8 Bài 8: Đối Xứng Tâm Trang 93 96 | Học Cùng
-
Đối Xứng Tâm: Lý Thuyết & Bài Tập Ôn Tập Môn Toán Lớp 8
-
Bài 8. Đối Xứng Tâm - Tìm đáp án, Giải Bài Tập, để Học Tốt
-
Toán Lớp 8 | Đối Xứng Tâm | Học Thật Tốt
-
Lý Thuyết & Giải Bài Tập SGK Bài 8: Đối Xứng Tâm - Chương I
-
Bài 8: Đối Xứng Tâm - Colearn
-
Cách Giải Bài Toán Dạng: Vận Dụng Phép đối Xứng ...
-
Hình Học 8 Bài 8 Đối Xứng Tâm Ngắn Gọn Và Chi Tiết Nhất
-
SBT Toán 8 Bài 8: Đối Xứng Tâm - Haylamdo