Lý Thuyết Các Hệ Thức Lượng Trong Tam Giác Và Giải Tam Giác
Nhắc lại hệ thức lượng trong tam giác vuông.
Cho tam giác \(ABC\) vuông góc tại đỉnh \(A\) (\(\widehat{A} = 90^0\)), ta có:
1. \({b^2} = ab';{c^2} = a.c'\)
2. Định lý Pitago : \({a^2} = {b^2} + {c^2}\)
3. \(a.h = b.c\)
4. \(h^2= b’.c’\)
5. \(\dfrac{1}{h^{2}}\) = \(\dfrac{1}{b^{2}}\) + \(\dfrac{1}{c^{2}}\)
1. Định lý cosin
Định lí: Trong một tam giác bất kì, bình phương một cạnh bằng tổng các bình phương của hai cạnh còn lại trừ đi hai lần tích của hai cạnh đó nhân với \(cosin\) của góc xen giữa chúng.
Ta có các hệ thức sau:
\({a^2} = {b^2} + {c^2} - 2bc.\cos A \) \( {b^2} = {a^2} + {c^2} - 2ac.\cos B \)\( {c^2} = {a^2} + {b^2} - 2ab.\cos C \)
Hệ quả của định lí cosin:
\(\cos A = \dfrac{b^{2}+c^{2}-a^{2}}{2bc}\)
\(\cos B = \dfrac{a^{2}+c^{2}-b^{2}}{2ac}\)
\(\cos C = \dfrac{a^{2}+b^{2}-c^{2}}{2ab}\)
Áp dụng: Tính độ dài đường trung tuyến của tam giác:
Cho tam giác \(ABC\) có các cạnh \(BC = a, CA = b\) và \(AB = c\). Gọi \(m_a,m_b\) và \(m_c\) là độ dài các đường trung tuyến lần lượt vẽ từ các đỉnh \(A, B, C\) của tam giác. Ta có
\({m_{a}}^{2}\) = \(\dfrac{2.(b^{2}+c^{2})-a^{2}}{4}\)
\({m_{b}}^{2}\) = \(\dfrac{2.(a^{2}+c^{2})-b^{2}}{4}\)
\({m_{c}}^{2}\) = \(\dfrac{2.(a^{2}+b^{2})-c^{2}}{4}\)
2. Định lí sin
Định lí: Trong tam giác \(ABC\) bất kỳ, tỉ số giữa một cạnh và sin của góc đối diện với cạnh đó bằng đường kính của đường tròn ngoại tiếp tam giác, nghĩa là
\(\dfrac{a}{\sin A}= \dfrac{b}{\sin B} = \dfrac{c}{\sin C} = 2R\)
với \(R\) là bán kính đường tròn ngoại tiếp tam giác
Công thức tính diện tích tam giác
Diện tích \(S\) của tam giác \(ABC\) được tính theo một trong các công thức sau
\(S = \dfrac{1}{2} ab \sin C= \dfrac{1}{2} bc \sin A \) \(= \dfrac{1}{2}ca \sin B \, \,(1)\)
\(S = \dfrac{abc}{4R}\, \,(2)\)
\(S = pr\, \,(3)\)
\(S = \sqrt{p(p - a)(p - b)(p - c)}\) (công thức Hê - rông) \((4)\)
Trong đó:\(BC = a, CA = b\) và \(AB = c\); \(R, r\) là bán kính đường tròn ngoại tiếp, bk đường tròn nội tiếp và \(S\) là diện tích tam giác đó.
3. Giải tam giác và ứng dụng vào việc đo đạc
Giải tam giác : Giải tam giác là đi tìm các yếu tố (góc, cạnh) chưa biết của tam giác khi đã biết một số yếu tố của tam giác đó.
Muốn giải tam giác ta cần tìm mối liên hệ giữa các góc, cạnh đã cho với các góc, các cạnh chưa biết của tam giác thông qua các hệ thức đã được nêu trong định lí cosin, định lí sin và các công thức tính diện tích tam giác.
Các bài toán về giải tam giác: Có 3 bài toán cơ bản về gỉải tam giác:
a) Giải tam giác khi biết một cạnh và hai góc.
=> Dùng định lí sin để tính cạnh còn lại.
b) Giải tam giác khi biết hai cạnh và góc xen giữa
=> Dùng định lí cosin để tính cạnh thứ ba.
Sau đó dùng hệ quả của định lí cosin để tính góc.
c) Giải tam giác khi biết ba cạnh
Đối với bài toán này ta sử dụng hệ quả của định lí cosin để tính góc:
\(\cos A = \dfrac{b^{2}+c^{2}-a^{2}}{2bc}\)
\(\cos B = \dfrac{a^{2}+c^{2}-b^{2}}{2ac}\)
\(cos C = \dfrac{a^{2}+b^{2}-c^{2}}{2ab}\)
Chú ý:
1. Cần lưu ý là một tam giác giải được khi ta biết 3 yếu tố của nó, trong đó phải có ít nhất một yếu tố độ dài (tức là yếu tố góc không được quá 2)
2. Việc giải tam giác được sử dụng vào các bài toán thực tế, nhất là các bài toán đo đạc.
4. Bài tập về hệ thức lượng trong tam giác
Bài 1. Trong tam giác $ABC$, ta có
A. \(bc = 2R.{h_a}\)
B. \(ac = R.{h_b}\)
C. \({a^2} = R.{h_a}\)
D. \(ab = 4R.{h_c}\)
Lời giải: Ta có:
\(\dfrac{1}{2}a.{h_a} = \dfrac{{abc}}{{4R}}\).
Suy ra \({h_a} = \dfrac{{bc}}{{2R}}.\) hay \(bc = 2R.{h_a}\).
Chọn đáp án A
Bài 2. Trong tam giác $ABC$, tìm hệ thức sai.
A. \({h_a} = b\sin C\)
B. \({h_a} = c\sin B\)
C. \({h_b} = b\sin B\)
D. \(c{h_c} = ab\sin C\)
Lời giải:
+ ) \(\dfrac{1}{2}a.{h_a} = \dfrac{1}{2}ab.\sin C = \dfrac{1}{2}ac.\sin B\)
Suy ra \({h_a} = b.\sin C = c.\sin B\). Suy ra mệnh đề đáp án A và B đúng.
+ ) \(\dfrac{1}{2}c.{h_c} = \dfrac{1}{2}ab.\sin C\). Suy ra \(c.{h_c} = ab.\sin C\). Suy ra mệnh đề đáp án D đúng.
Chọn đáp án C.
Bài 3. Cho tam giác $ABC$ có \(\widehat B = {60^0},\widehat C = {45^0}\) và $AB = 5$. Kết quả nào trong các kết quả sau là độ dài của cạnh $AC$?
A. $10$
B. \(\dfrac{{5\sqrt 6 }}{2}\)
C. \(5\sqrt 3 \)
D. \(5\sqrt 2 \)
Lời giải:
\(\dfrac{b}{{\sin B}} = \dfrac{c}{{\sin C}} \Rightarrow b = \dfrac{c}{{\sin C}}.\sin B = \dfrac{5}{{\sin {{45}^0}}}.\sin {60^0} = \dfrac{{5\sqrt 6 }}{2}.\)
Chọn đáp án B.
Bài 4. Cho tam giác $ABC$ có $b = 10,c = 16$ và góc \(\widehat A = {60^0}\). Kết quả nào trong các kết quả sau là độ dài của cạnh $BC$?
A. \(2\sqrt {129} \)
B. \(14\)
C. \(98\)
D. \(2\sqrt {69} \)
Lời giải: $\begin{array}{l}{a^2} = {b^2} + {c^2} - 2bc\cos A\\ = {10^2} + {16^2} - 2.10.16.\cos {60^0}\\ = {\rm{ }}196\end{array}$ .
Suy ra \(BC = a = \sqrt {196} = 14\).
Chọn đáp án B.
Bài 5. Tam giác \(ABC\) có đoạn thẳng nối trung điểm của \(AB\) và \(BC\) bằng \(3\), cạnh \(AB = 9\) và \(\widehat {ACB} = 60^\circ \). Tính độ dài cạnh cạnh \(BC\).
A. \(BC = 3 + 3\sqrt 6 .\)
B. \(BC = 3\sqrt 6 - 3.\)
C. \(BC = 3\sqrt 7 .\)
D. \(BC = \dfrac{{3 + 3\sqrt {33} }}{2}.\)
Lời giải:
Gọi \(M,\;N\) lần lượt là trung điểm của \(AB,\;BC\).
\( \Rightarrow MN\) là đường trung bình của \(\Delta ABC\).
\( \Rightarrow MN = \dfrac{1}{2}AC\). Mà \(MN = 3\), suy ra \(AC = 6\).
Theo định lí hàm cosin, ta có
\(\begin{array}{l}A{B^2} = A{C^2} + B{C^2} - 2.AC.BC.\cos \widehat {ACB}\\ \Leftrightarrow {9^2} = {6^2} + B{C^2} - 2.6.BC.\cos 60^\circ \\ \Rightarrow BC = 3 + 3\sqrt 6 \end{array}\)
Chọn đáp án A.
Bài 6. Cho tam giác $ABC$ có $a = 10,b = 6$ và $c = 8$. Kết quả nào trong các kết quả sau là số đo độ dài của trung tuyến $AM$?
A. $25$
B. $5$
C. $6$
D. $7$
Lời giải:
\(m_a^2 = \dfrac{{{b^2} + {c^2}}}{2} - \dfrac{{{a^2}}}{4} = \dfrac{{{6^2} + {8^2}}}{2} - \dfrac{{{{10}^2}}}{4} = 25 \Rightarrow {m_a} = 5.\)
Chọn đáp án B.
Bài 7. Tam giác $ABC$ có ba cạnh là $5,12,13$. Khi đó, diện tích tam giác là:
A. $30$
B. \(20\sqrt 2 \)
C. \(10\sqrt 3 \)
D. $20$
Lời giải:
+ Ta có \(p = \dfrac{{a + b + c}}{2} = \dfrac{{5 + 12 + 13}}{2} = 15\)
+ \(S = \sqrt {p(p - a)(p - b)(p - c)} = \sqrt {15.10.3.2} = \sqrt {900} = 30\)
Chọn đáp án A.
Bài 8. Tam giác $ABC$ có $BC = a,CA = b,AB = c$ và có diện tích $S$ . Nếu tăng cạnh $BC$ lên $2$ lần đồng thời tăng cạnh $CA$ lên $3$ lần và giữ nguyên độ lớn của góc $C$ thì khi đó diện tích tam giác mới được tạo nên bằng:
A. $2S$
B. $3S$
C. $4S$
D. $6S$
Lời giải: + Có \(S = \dfrac{1}{2}BC.CA.\sin C\)
+ Gọi $S'$ là diện tích tam giác khi tăng cạnh $BC$ lên $2$ lần đồng thời tăng cạnh $CA$ lên $3$ lần và giữ nguyên độ lớn của góc $C$ , ta có: \(S' = \dfrac{1}{2}.2BC.3CA.\sin C = 6S\)
Chọn đáp án D.
Từ khóa » định Lý Hàm Số Cosin Lớp 10
-
Định Lý Hàm Cosin Và Những Kiến Thức Liên Quan - VOH
-
Định Lí Côsin Và Cách Vận Dụng định Lý Côsin Trong Tam Giác Cực Hay
-
Định Lí Cosin, định Lý Sin, Các Công Thức Tính Diện Tích Tam Giác
-
1. Định Lý Cosin (Định Lý Hàm Cos) - DINH LUAT
-
Hệ Thức Lượng Tam Giác - Định Lí Hàm Số Cosin - Hình 10 - YouTube
-
Định Lý Hàm Số Cosin (Bài: Các Hệ Thức Lượng Trong Tam Giác)
-
Định Lý Cosin Và Cách Vận Dụng định Lý Hàm Số Cos
-
Top 14 Hàm Số Cosin Lớp 10
-
Định Lý Và Công Thức Sin Cos Tan Lớp 9, Lớp 10, Lớp 11, Lớp 12
-
Định Lí Sin, Định Lí Côsin, Diện Tích Tam Giác - Công Thức
-
Định Lý Sin, Cos Và Công Thức Sin Cos Trong Tam Giác Chi Tiết Từ A - Z
-
Định Lý Cosin Trong Tam Giác Và ứng Dụng Của định Lý Cos
-
Các Dạng Toán Về Hệ Thức Lượng Trong Tam Giác Lớp 10