Lý Thuyết đạo Hàm Của Hàm Số Lượng Giác | SGK Toán Lớp 11
Có thể bạn quan tâm
1. Giới hạn của \(\frac{{\sin x}}{x}\)
Ta thừa nhận định lý:
\({\mathop {\lim }\limits_{x \to 0} \;\frac{{\sin x}}{x} = 1}\)
2. Đạo hàm của hàm số lượng giác
+ Hàm số \(y = \sin x\) có đạo hàm \(\forall \;x \in R\) và \((\sin x)' = \cos x\) ;
+ Hàm số \(y = \cos x\) có đạo hàm \(\forall \;x \in R\) và \((\cos x)' = -\sin x\);
+ Hàm số \(y = \tan x\) có đạo hàm \(\forall \;x \ne \frac{\pi }{2} + k\pi ,\;\;k \in \) và \((\tan x)' = \dfrac{1}{\cos^{2}x}\);
+ Hàm số \(y = \cot x\) có đạo hàm \(\forall \;x \ne k\pi ,\;\;k \in \) và \((\cot x)' = - \dfrac{1}{\sin^{2}x}\)
3. Bảng tổng hợp đạo hàm của hàm số lượng giác
\((\sin x)' = \cos x\) | \((\sin u)' = (\cos u).u' = u'.\cos u\) |
\((\cos x)' = -\sin x\) | \((\cos u)' = (-\sin u).u' = -u'.\sin u\) |
\((\tan x)' = \dfrac{1}{\cos^{2}x}\) | \((\tan u)' = \dfrac{u'}{\cos^{2}u}\) |
\((\cot x)' = - \dfrac{1}{\sin^{2}x}\) | \((\cot u)' = - \dfrac{u'}{\sin^{2}u}\) |
Từ khóa » đạo Hàm Cos
-
Bảng đạo Hàm Của Các Hàm Số Cơ Bản (thường Gặp) - MathVn.Com
-
Công Thức Tính đạo Hàm Từ Cơ Bản đến Nâng Cao
-
Đạo Hàm Của Các Hàm Lượng Giác – Wikipedia Tiếng Việt
-
Bảng Công Thức Đạo Hàm Và Đạo Hàm Lượng Giác [Đầy Đủ]
-
Công Thức Đạo Hàm Lượng Giác Đầy Đủ Và Bài Tập ... - Marathon
-
Tổng Hợp Bảng Công Thức đạo Hàm Cơ Bản đầy đủ
-
Bảng đạo Hàm Cơ Bản Và Nâng Cao đầy đủ Nhất
-
Bảng đầy đủ Các Công Thức đạo Hàm Và đạo Hàm Lượng Giác
-
Đạo Hàm Cos - Đạo Hàm Lượng Giác
-
Đạo Hàm Của Hàm Số Lượng Giác - Giải Bài Tập SGK Toán 11
-
Tìm Đạo Hàm - D/d@VAR F(x)=cos(x) - Mathway
-
Giải Tích Ví Dụ - Mathway
-
Tính đạo Hàm Của Các Hàm Số Lượng Giác