Lý Thuyết định Lí Py-ta-go | SGK Toán Lớp 7
Có thể bạn quan tâm
1. Định lí Pytago
Trong một tam giác vuông, bình phương của cạnh huyền bằng tổng các bình phương của hai cạnh góc vuông.
\(∆ABC\) vuông tại \(A\) thì ta có:
\(B{C^2} = A{B^2} + A{C^2}\)

Ví dụ: Cho tam giác ABC vuông tại A có AB= 6cm, AC= 8cm. Tính BC.

Áp dụng định lí Pytago trong tam giác vuông ABC, ta có:
\(B{C^2} = A{B^2} + A{C^2}\)
Nên \( BC^2= 6^2 + 8^2 = 36+64=100=10^2\)
Vậy \(BC=10 cm\)
Chú ý: Dựa vào định lí Pytago, khi ta biết độ dài 2 cạnh của tam giác vuông, ta sẽ tính được độ dài cạnh còn lại
2. Định lí Pytago đảo.
Nếu một tam giác có bình phương của một cạnh bằng tổng các bình phương của hai cạnh kia thì tam giác đó là tam giác vuông.
\(∆ABC \) có \(B{C^2} = A{B^2} + A{C^2}\)
\(\Rightarrow \widehat {BAC} = {90^o}\)
Sử dụng định lý Py-ta-go đảo để nhận biết tam giác vuông
Phương pháp:
+ Tính bình phương các độ dài ba cạnh của tam giác
+ So sánh bình phương của cạnh lớn nhất với tổng các bình phương của hai cạnh kia
+ Nếu hai kết quả bằng nhau thì tam giác đó là tam giác vuông, cạnh lớn nhất là cạnh huyền.
Ví dụ: Cho tam giác ABC có AC= 5 cm, BC= 3 cm, AB= 4 cm. Tam giác ABC là tam giác gì?

Ta có: \(AC^2 = BC^2+AB^2\)( vì \(5^2=3^2+4^2\))
Nên tam giác ABC vuông tại B( Định lí Pytago đảo)
Chú ý: Cạnh huyền là cạnh lớn nhất trong tam giác vuông

Từ khóa » Công Thức định Lí Py Ta Go
-
Công Thức định Lý Pitago
-
Định Lý Pytago Và Cách áp Dụng định Lý Pitago Làm Bài Tập
-
Cách để Sử Dụng Định Lý Pytago - WikiHow
-
Định Lí Pytago Và Cách ứng Dụng định Lí Pytago Vào Giải Toán
-
Định Lý Pytago Trong Tam Giác Vuông Là Gì ? Lý Thuyết, Bài Tập Toán ...
-
Định Lý Pitago Là Gì, Công Thức Pytago Trong Tam Giác Vuông
-
Định Lý Pytago - Hướng Dẫn Giải Bài Tập Hình Học Lớp 7 - I Toán - Itoan
-
Định Lý Pytago Và Những Kiến Thức Cơ Bản - Toán Lớp 7 Là Chuyện Nhỏ
-
Định Lý Pitago Lý Thuyết Và Bài Tập Về Định Lí Py-ta-go Lớp 7
-
Lý Thuyết Và Bài Tập định Lý Pytago đảo - Tin Công Chức - Icongchuc
-
Lý Thuyết định Lí Py-ta-go - Môn Toán - Tìm đáp án, Giải Bài Tập, để