Lý Thuyết Góc Và Cung Lượng Giác | SGK Toán Lớp 10
Có thể bạn quan tâm
1. Đơn vị đo góc và cung tròn
a) Độ là số đo của góc bằng \({1 \over {180}}\) góc bẹt
Số đo của một cung tròn bằng số đo của góc ở tâm chắn cung đo.
Như vậy số đo của cung bằng \({1 \over {180}}\) nửa đường tròn là một độ.
Kí hiệu \(1^0\) đọc là một độ
\(1^0= 60'\); \(1' = 60''\)
b) Radian
Cung có độ dài bằng bán kính đường tròn chứa cung ấy có số đo là \(1\) radian, kí hiệu \(1rad \) hay đơn giản là bỏ chữ \(rad\) và kí hiệu là \(1\).
c) Quan hệ giữa độ và radian
\({180^0} = \pi rad \)\(\Rightarrow {1^0} = {\pi \over {180}}rad,1rad = {\left( {{{180} \over \pi }} \right)^0}\)
d) Độ dài cung tròn
Một cung của đường tròn bán kính \(R\) có số đo \(α\) \( rad\) thì độ dài \(l = Rα\).
2. Góc và cung lượng giác
- Đường tròn định hướng là đường tròn có chiều di động đã được quy ước: chiều dương là ngược chiều kim đồng hồ, chiều âm là cùng chiều đồng hồ.
Chú ý: Ta chỉ xét các khái niệm góc lượng giác, cung lượng giác trên đường tròn định hướng.
- Góc lượng giác: Khi tia \(Om\) quay chỉ theo chiều dương hoặc chỉ theo chiều âm từ tia \(Ou\) đến tia \(Ov\) thì nó quét một góc lượng giác với tia đầu \(Ou\) và tia cuối \(Ov\), kí hiệu \(\left( {Ou,Ov} \right)\).
- Cung lượng giác: Khi tia \(Om\) quét nên một góc lượng giác \(\left( {Ou,Ov} \right)\) thì điểm \(M\) chạy trên đường tròn luôn theo một chiều dương hoặc âm từ \(U\) đến \(V\). Ta nói điểm \(M\) vạch nên một cung lượng giác điểm đầu \(U\) và điểm cuối \(V\) tương ứng với góc lượng giác \(\left( {Ou,Ov} \right)\).
- Số đo góc và cung lượng giác
- Nếu một góc lượng giác có số đo \({a^0}\) (hay \(\alpha \left( {rad} \right)\)) thì mọi góc lượng giác cùng tia đầu, tia cuối với nó có số đo dạng \({a^0} + k{360^0}\) (hay \(\alpha + k2\pi \left( {rad} \right)\)), \(k \in Z\).
Chú ý: Không viết \({a^0} + k2\pi \) hay \(\alpha + k{360^0}\) (vì không cùng đơn vị đo).
- Nếu một cung lượng giác có số đo \({a^0}\) (hay \(\alpha \left( {rad} \right)\)) thì mọi góc lượng giác cùng tia đầu, tia cuối với nó có số đo dạng \({a^0} + k{360^0}\) (hay \(\alpha + k2\pi \left( {rad} \right)\)), \(k \in Z\).
3. Hệ thức Salơ
Ba tia chung gốc \(OA, OB, OC\) bất kì thì:
\(sđ(OA, OB) + sđ(OB, OC) \)\(= sđ(OA, OC) + k.360^0\) \((k2π)\)
4. Biểu diễn cung lượng giác trên đường tròn lượng giác
a) Đường tròn lượng giác là đường tròn định hướng có tâm là gốc \(O\) của hệ toạ độ trực chuẩn có bán kính bằng 1. Điểm gốc của cung lượng giác là điểm \(A (1; 0)\)
b) Biểu diễn cung lượng giác trên đường tròn lượng giác có số đo bằng \(α\) bằng cách chọn điểm gốc là điểm \(A(1;0)\) là điểm ngọn \(M\) sao cho sđ cung \(AM\) bằng \(α\).
Loigiaihay.com
Từ khóa » Góc Lượng Giác
-
Các Công Thức Lượng Giác Toán 10 Đầy Đủ Nhất - Kiến Guru
-
Lý Thuyết Góc Lượng Giác Và Công Thức Lượng Giác đầy đủ, Chi Tiết
-
Cung Và Góc Lượng Giác: Lý Thuyết Và Các Dạng Toán Lớp 10
-
Lý Thuyết Tổng Hợp Chương Cung Và Góc Lượng Giác. Công Thức ...
-
Công Thức Lượng Giác đầy đủ Nhất Cho Lớp 9, Lớp 10, Lớp 11
-
Lý Thuyết Giá Trị Lượng Giác Của Một Góc (cung) Lượng Giác Toán 10
-
Cung Và Góc Lượng Giác - Môn Toán 10 - Thầy Giáo Nguyễn Công ...
-
Giải Toán 10 Bài 1. Cung Và Góc Lượng Giác
-
CongThucLuongGiac: Bảng Công Thức Lượng Giác Và Cách Học ...
-
Lý Thuyết, Các Dạng Toán Và Bài Tập Cung Và Góc Lượng Giác, Công ...
-
Công Thức Lượng Giác
-
Biểu Diễn Góc Và Cung Lượng Giác
-
Xác định Các Yếu Tố Liên Quan đến Cung Và Góc Lượng Giác