Lý Thuyết Hàm Số Lũy Thừa | SGK Toán Lớp 12
Có thể bạn quan tâm
1. Khái niệm hàm số lũy thừa
Hàm số lũy thừa là các hàm số dạng \(y = {x^\alpha }\left( {\alpha \in R} \right)\). Các hàm số lũy thừa có tập xác định khác nhau, tùy theo \(\alpha\):
- Nếu \(\alpha\) nguyên dương thì tập các định là \(R\).
- Nếu \(\alpha \) nguyên âm hoặc \(\alpha = 0\) thì tập các định là \(R\backslash \left\{ 0 \right\}\).
- Nếu \(\alpha \) không nguyên thì tập các định là \(\left( {0; + \infty } \right)\).
Chú ý: Hàm số \(y = \sqrt x \) có tập xác định là \(\left[ {0; + \infty } \right)\), hàm số \(y = \sqrt[3]{x}\) có tập xác định \(R\), trong khi đó các hàm \(y = {x^{\frac{1}{2}}},y = {x^{\frac{1}{3}}}\) đều có tập xác định \((0; +∞)\). Vì vậy \(y = \sqrt x \) và \(y = {x^{\frac{1}{2}}}\) ( hay \(y = \sqrt[3]{x}\) và \(y = {x^{\frac{1}{3}}}\)) là những hàm số khác nhau.
2. Đạo hàm của hàm số lũy thừa với số mũ tổng quát
- Hàm số \(y = {x^\alpha }\) có đạo hàm tai mọi \(x ∈ (0; +∞)\) và \(y' = \left( {{x^\alpha }} \right)' = \alpha {x^{\alpha - 1}}\)
- Nếu hàm số \(u=u(x)\) nhận giá trị dương và có đạo hàm trong khoảng \(J\) thì hàm số \(y = {u^\alpha }\left( x \right)\) cũng có đạo hàm trên \(J\) và \[y' = \left[ {{u^\alpha }\left( x \right)} \right]' = \alpha {u^{\alpha - 1}}\left( x \right)u'\left( x \right)\]
3. Đạo hàm của hàm số lũy thừa với số mũ nguyên dương
Trong trường hợp số mũ nguyên dương, hàm số lũy thừa \(y=x^n\) có tập xác định là \(R\) và có đạo hàm trên toàn trục số. Công thức tính đạo hàm số lũy thừa tổng quát được mở rộng thành \(\forall x \in R,\left( {{x^n}} \right)' = n{x^{n - 1}}\) và \[\forall x \in J,\left[ {{u^n}\left( x \right)} \right]' = n{u^{n - 1}}\left( x \right)u'\left( x \right)\] nếu \(u= u(x) \) có đạo hàm trong khoảng \(J\).
4. Đạo hàm của hàm số lũy thừa với số mũ nguyên âm
Nếu số mũ là số nguyên âm thì hàm số lũy thừa \(y=x^n\) có tập xác định là \(R\backslash \left\{ 0 \right\}\) và có đạo hàm tại mọi \(x\) khác \(0\), công thức đạo hàm hàm số lũy thừa tổng quát được mở rộng thành \(\forall x \ne 0,\left( {{x^n}} \right)' = n{x^{n - 1}}\) và \[\forall x \in J,\left[ {{u^n}\left( x \right)} \right]' = n{u^{n - 1}}\left( x \right)u'\left( x \right)\]
nếu \(u= u(x) \ne 0\) có đạo hàm trong khoảng \(J\).
5. Đạo hàm của căn thức
Hàm số \(y = \sqrt[n]{x}\) có thể xem là mở rộng của hàm lũy thừa \(y = {x^{\frac{1}{n}}}\) (tập xác định của \(y = \sqrt[n]{x}\) chứa tập xác định của \(y = {x^{\frac{1}{n}}}\) và trên tập xác định của \(y = {x^{\frac{1}{n}}}\) thì hai hàm số trùng nhau).
Khi \(n\) lẻ thì hàm số \(y = \sqrt[n]{x}\) có tập xác định \(R\). Trên khoảng \((0; +∞) \) ta có \(y = \sqrt[n]{x} = {x^{\frac{1}{n}}}\) và \(\left( {{x^{\frac{1}{n}}}} \right)' = \dfrac{1}{n}{x^{\frac{1}{n} - 1}}\), do đó \(\left( {\sqrt[n]{x}} \right)' = \dfrac{1}{{n\sqrt[n]{{{x^{n - 1}}}}}}\).
Công thức này còn đúng cả với \(x < 0\) và hàm số \(y = \sqrt[n]{x}\) không có đạo hàm tại \(x= 0\).
Khi \(n\) chẵn hàm \(y = \sqrt[n]{x}\) có tập xác định là \([0;+∞)\), không có đạo hàm tại \(x= 0\) và có đạo hàm tại mọi \(x > 0\) tính theo công thức:
\[ \left( {\sqrt[n]{x}} \right)' =\left( {\sqrt[n]{x}} \right)' = \dfrac{1}{{n\sqrt[n]{{{x^{n - 1}}}}}}\]
Tóm lại, ta có \( \left( {\sqrt[n]{x}} \right)' =\left( {\sqrt[n]{x}} \right)' = \dfrac{1}{{n\sqrt[n]{{{x^{n - 1}}}}}}\) đúng với mọi \(x\) làm cho hai vế có nghĩa.
Sử dụng quy tắc đạo hàm hàm hợp ta suy ra: Nếu \(u=u(x)\) là hàm có đạo hàm trên khoảng \(J\) và thỏa mãn điều kiện \(u(x) > 0, ∀x ∈ J\) khi \(n\) chẵn, \(u\left( x \right) \ne 0,\forall x \in J\) khi \(n\) lẻ thì
\[\forall x \in J,\left( {\sqrt[n]{{u\left( x \right)}}} \right)' = \dfrac{{u'\left( x \right)}}{{n\sqrt[n]{{{u^{n - 1}}\left( x \right)}}}}\]
6. Đồ thị hàm số \(y = {x^\alpha }\) trên khoảng \((0; +∞)\)
Chú ý: Khi khảo sát hàm số \(y = {x^\alpha }\) với \(\alpha \) cụ thể, cần xét hàm số trên toàn tập xác định của nó (chứ không phải chỉ xét trên khoảng \((0; +∞)\) như trên).
Loigiaihay.com
Từ khóa » Hàm Số Luỹ Thừa Là Gì
-
Hàm Số Lũy Thừa Là Gì? Cách Tính đạo Hàm Của Hàm Số ... - KhoiA.Vn
-
Hàm Số Lũy Thừa - Lý Thuyết Toán 12
-
Hàm Số Lũy Thừa Là Gì? Lũy Thừa Của Một Số Hữu Tỉ Và Lũy Thừa Ma Trận
-
Điều Kiện Của Hàm Số Luỹ Thừa - Bí Kíp để Hiểu đúng, Nắm Vững
-
Tổng ôn Toàn Bộ Hàm Số Luỹ Thừa Hàm Số Mũ Và Hàm Số Logarit
-
Lý Thuyết Hàm Số Lũy Thừa Toán 12 - Định Nghĩa Và Bài Tập Minh ...
-
Hàm Số Lũy Thừa: Lý Thuyết & Bài Tập Chi Tiết (Kèm Tài Liệu) - VerbaLearn
-
Toán 12 Bài 2: Hàm Số Lũy Thừa - HOC247
-
Hàm Số Lũy Thừa Và Hàm Số Mũ, Trắc Nghiệm Toán Học Lớp 12
-
Lý Thuyết Hàm Số Lũy Thừa - Môn Toán - Tìm đáp án, Giải Bài Tập, để
-
Tập Xác định Của Hàm Số Mũ, Lũy Thừa, Logarit Cực đơn Giản [VD ...
-
Lũy Thừa – Wikipedia Tiếng Việt
-
Hàm Số Lũy Thừa Là Gì? Đao Hàm Hàm Số Lũy Thừa Toán 12
-
HÀM SỐ LŨY THỪA LÀ GÌ? LÝ THUYẾT VÀ BÀI TẬP TOÁN 12 ...