Lý Thuyết Hoán Vị - Chỉnh Hợp Và Tổ Hợp - Trường Quốc Học

Lý thuyết Hoán vị – Chỉnh hợp và Tổ hợp

Lý thuyết Hoán vị – Chỉnh hợp và Tổ hợp bao gồm định nghĩa, định lí, các khái niệm về tổ hợp chập n của phần tử.

1. Khái niệm hoán vị

Cho n phần tử khác nhau (n ≥ 1). Mỗi cách sắp thứ tự của n phần tử đã cho, mà trong đó mỗi phần tử có mặt đúng một lần, được gọi là một hoán vị của n phần tử đó. Định lí: Số các hoán vị của n phần tử khác nhau đã cho (n ≥ 1) được kí hiệu là $\displaystyle {{P}_{n}}$ và bằng: $\displaystyle {{P}_{n}}$ =n(n-1)(n-2)…2.1=n!

2. Chỉnh hợp

Định nghĩa chỉnh hợp: Cho n phần tử khác nhau (n ≥ 1). Mỗi tập con sắp thứ tự gồm k phần tử khác nhau (1 ≤ k ≤ n) của tập hợp n phần tử đã cho được gọi là một chỉnh hợp chập k của n phần tử đã cho. Chú ý: Mỗi hoán vị của n phần tử khác nhau đã cho chính là một chỉnh hợp chập n của n phần tử đó. Định lí: Số chỉnh hợp chập k của n phần tử khác nhau đã cho được kí hiệu là Akn và bằng $\displaystyle A_{n}^{k}=n(n-1)…(n-k+1)=\frac{n!}{(n-k)!}$ với (1 ≤ k ≤ n), Với quy ước 0! = 1.

3. Tổ hợp

Định nghĩa: Cho n phần tử khác nhau (n ≥ 1). Mỗi tập con gồm k phần tử khác nhau (không phân biệt thứ tự) của tập hợp n phần tử đã cho (0 ≤ k ≤ n) được gọi là một tổ hợp chập k của n phần tử dã cho (với quy ước tổ hợp chập 0 của n phần tử bất kỳ là tập rỗng). Định lí: Số các tổ hợp chập k của n phần tử khác nhau đã cho được kí hiệu là Ckn và bằng $\displaystyle C_{n}^{k}=\frac{n!}{k!(n-k)!}=\frac{A_{n}^{k}}{k!}$ , (0 ≤ k ≤ n). Định lí: Với mọi n ≥ 1; 0 ≤ k ≤ n, ta có: a) $\displaystyle C_{n}^{k}=C_{n}^{n-k}$ b) $\displaystyle C_{n}^{k}+C_{n}^{k+1}=C_{n+1}^{k+1}$ ( công thức Pascal).

Đại số, Toán lớp 11 - Tags: đại số 11
  • Ứng dụng của tích phân trong hình học

  • Lý thuyết bất phương trình mũ và logarit

  • Lý thuyết phương trình mũ và logarit

  • Định nghĩa và tính chất của cấp số cộng

  • Lý thuyết dãy số

  • Hàm số lũy thừa, số mũ

  • Khái niệm lũy thừa, cách tính lũy thừa của một số

Từ khóa » Chỉnh Hợp Và Tổ Hợp