Lý Thuyết Khảo Sát Sự Biến Thiên Và Vẽ đồ Thị Của Hàm Số - Môn Toán
Có thể bạn quan tâm
Tóm tắt lý thuyết
1. Các bước khảo sát và vẽ đồ thị hàm số y = f(x)
a) Tìm tập xác định của hàm số. Xét tính chẵn, lẻ, tuần hoàn của hàm số để thu hẹp phạm vi khảo sát.
b) Sự biến thiên :
+ Xét sự biến thiên của hàm số :
- Tìm đạo hàm bậc nhất y' ;
- Tìm các điểm tại đó y' bằng 0 hoặc không xác định ;
- Xét dấu y' và suy ra chiều biến thiên của hàm số .
+ Tìm cực trị .
+ Tìm các giới hạn tại vô cực, các giới hạn vô cực và tìm các tiệm cận (nếu có).
+ Lập bảng biến thiên tổng kết các bước trên để hình dung ra dáng điệu của đồ thị .
c) Vẽ đồ thị (thể hiện các cực trị, tiệm cận, giao của đồ thị với các trục, . . .).
2. Bảng tóm tắt một số dạng đồ thị thường gặp
3.Chứng minh \((x_{0};y_{0})\) là tâm đối xứng của đồ thị (C) của hàm số y=f(x)
Đồ thị hàm số lẻ luôn nhận gốc tọa độ là tâm đối xứng.
Vậy để chứng minh \(I(x_{0};y_{0})\) là tâm đối xứng, ta dùng công thức đổi trục: \(\left\{\begin{matrix} x=x_{0}+X & \\ y=y_{0}+Y & \end{matrix}\right.\) để đưa hệ trục Oxy về hệ trục IXY (gốc I) và chứng minh: trong hệ trục IXY, hàm số đã cho có dạng Y=g(X) là hàm số lẻ.
(Chú ý: \(M(x,y)\in (C)\Leftrightarrow y=f(x)\Leftrightarrow Y+y_{0}=f(X+x_{0})\Leftrightarrow Y=g(X)\)).
4. Chứng minh đường thẳng \(\Delta : x=x_{0}\) là trục đối xứng của đồ thị (C) của hàm số y=f(x)
Đồ thị của hàm số chẵn luôn nhận trục tung là trục đối xứng. Vậy để chứng minh đường thẳng \(\Delta : x=x_{0}\) là trục đối xứng, ta dùng công thức đổi trục \(\left\{\begin{matrix} x=x_{0}+X & \\ y=Y & \end{matrix}\right.\) để đưa hệ số Oxy về hệ trục IXY (\(\Delta\) là trục tung) và chứng minh: trong hệ trục IXY, hàm số đã cho có dạng Y=g(X) là hàm số chẵn.
5. Tương giao của các đồ thị
Cho hai đồ thị \((C_{1}):y=f(x);\) và \((C_{2}):y=g(x).\)
Phương trình xác định hoành độ giao điểm của \((C_{1})\) và \((C_{2})\) là: f(x)=g(x). (1)
- Nếu (1) vô nghiệm thì \((C_{1})\) và \((C_{2})\) không có điểm chung (không cắt nhau và không tiếp xúc với nhau).
- Nếu (1) có nnghiệm phân biệt thì \((C_{1})\) và \((C_{2})\) giao nhau tại n điểm phân biệt. Nghiệm của (1) chính là hoành độ các giao điểm.
Chú ý
a) \((C_{1})\) tiếp xúc với \((C_{2})\) \(\Leftrightarrow\) hệ \(\left\{ \begin{matrix} f(x) =g(x)& \\ f'(x)=g'(x) & \end{matrix}\right.\) có nghiệm. Nghiệm của hệ là hoành độ tiếp điểm của hai đồ thị đó.
b) Đường thẳng (d): y: mx+n tiếp xúc với parabol \(-1\) \(\Leftrightarrow\) hệ \(\left\{ \begin{matrix} ax^{2}+bx+c=mx+n \\ 2ax+b=m) & \end{matrix}\right.\) có nghiệm
\(\Leftrightarrow\) phương trình \(\Leftrightarrow\) \(ax^{2}+bx+c=mx+n\) có nghiệm kép.
Từ khóa » Khảo Sát Hàm Số Lớp 10
-
Toán 10 - Khảo Sát Hàm Số Bậc 2, Bài Tập áp Dụng - Hayhochoi
-
Các Dạng Bài Tập Hàm Số Lớp 10 Quan Trọng Trong Chương II
-
Chuyên đề Khảo Sát Hàm Số Dành Cho Lớp 10 - Slideshare
-
Sự Biến Thiên Của Hàm Số Lớp 10, Khảo Sát ...
-
Dạng 1: Khảo Sát Sự Biến Thiên Và Vẽ đồ Thị Hàm Số Bậc Hai | 7scv
-
Toán 10- Khảo Sát Hàm Số Bậc 2- Bài Tập áp Dụng
-
Cách Vẽ đồ Thị Hàm Số Bậc 2 ở Lớp 10 - Toán Thầy Định
-
Khảo Sát Hàm Số Và Vẽ đồ Thị Hàm Số - Toán Cấp 3
-
CÁCH VẼ PARABOL-KHẢO SÁT SỰ BIẾN THIÊN CỦA HÀM SỐ ...
-
Xét Sự Biến Thiên Và Vẽ đồ Thị Hàm Số Bậc Hai Hay, Chi Tiết - Toán Lớp 10
-
Khảo Sát Sự Biến Thiên Của Hàm Số Lớp 10
-
Khảo Sát Sự Biến Thiên Của Hàm Số Lớp 10 - 123doc
-
Bài Tập Khảo Sát Sự Biến Thiên Của Hàm Số Lớp 10 - 123doc
-
Khảo Sát Sự Biến Thiên Của Các Hàm Số Sau:. Bài 12 Trang 46 SGK ...