Lý Thuyết Logarit - định Nghĩa Và Tính Chất Toán 12
Có thể bạn quan tâm
Mục Lục - Lý thuyết Toán 12
- Bài 1: Sự đồng biến, nghịch biến của hàm số
- Bài 2: Cực trị của hàm số
- Bài 3: Phương pháp giải một số bài toán cực trị có tham số đối với một số hàm số cơ bản
- Bài 4: Giá trị lớn nhất và giá trị nhỏ nhất của hàm số
- Bài 5: Đồ thị hàm số và phép tịnh tiến hệ tọa độ
- Bài 6: Đường tiệm cận của đồ thị hàm số và luyện tập
- Bài 7: Khảo sát sự biến thiên và vẽ đồ thị của hàm đa thức bậc ba
- Bài 8: Khảo sát sự biến thiên và vẽ đồ thị của hàm đa thức bậc bốn trùng phương
- Bài 9: Phương pháp giải một số bài toán liên quan đến khảo sát hàm số bậc ba, bậc bốn trùng phương
- Bài 10: Khảo sát sự biến thiên và vẽ đồ thị của một số hàm phân thức hữu tỷ
- Bài 11: Phương pháp giải một số bài toán về hàm phân thức có tham số
- Bài 12: Phương pháp giải các bài toán tương giao đồ thị
- Bài 13: Phương pháp giải các bài toán tiếp tuyến với đồ thị và sự tiếp xúc của hai đường cong
- Bài 14: Ôn tập chương I
- Bài 1: Lũy thừa với số mũ hữu tỉ - Định nghĩa và tính chất
- Bài 2: Phương pháp giải các bài toán liên quan đến lũy thừa với số mũ hữu tỉ
- Bài 3: Lũy thừa với số mũ thực
- Bài 4: Hàm số lũy thừa
- Bài 5: Các công thức cần nhớ cho bài toán lãi kép
- Bài 6: Logarit - Định nghĩa và tính chất
- Bài 7: Phương pháp giải các bài toán về logarit
- Bài 8: Số e và logarit tự nhiên
- Bài 9: Hàm số mũ
- Bài 10: Hàm số logarit
- Bài 11: Phương trình mũ và một số phương pháp giải
- Bài 12: Phương trình logarit và một số phương pháp giải
- Bài 13: Hệ phương trình mũ và logarit
- Bài 14: Bất phương trình mũ
- Bài 15: Bất phương trình logarit
- Bài 16: Ôn tập chương 2
- Bài 1: Nguyên hàm
- Bài 2: Sử dụng phương pháp đổi biến để tìm nguyên hàm
- Bài 3: Sử dụng phương pháp nguyên hàm từng phần để tìm nguyên hàm
- Bài 4: Tích phân - Khái niệm và tính chất
- Bài 5: Tích phân các hàm số cơ bản
- Bài 6: Sử dụng phương pháp đổi biến số để tính tích phân
- Bài 7: Sử dụng phương pháp tích phân từng phần để tính tích phân
- Bài 8: Ứng dụng tích phân để tính diện tích hình phẳng
- Bài 9: Ứng dụng tích phân để tính thể tích vật thể
- Bài 10: Ôn tập chương III
- Bài 1: Số phức
- Bài 2: Căn bậc hai của số phức và phương trình bậc hai
- Bài 3: Phương pháp giải một số bài toán liên quan đến điểm biểu diễn số phức thỏa mãn điều kiện cho trước
- Bài 4: Phương pháp giải các bài toán tìm min, max liên quan đến số phức
- Bài 5: Dạng lượng giác của số phức
- Bài 1: Khái niệm về khối đa diện
- Bài 2: Phép đối xứng qua mặt phẳng và sự bằng nhau của các khối đa diện
- Bài 3: Khối đa diện đều. Phép vị tự
- Bài 4: Thể tích của khối chóp
- Bài 5: Thể tích khối hộp, khối lăng trụ
- Bài 6: Ôn tập chương Khối đa diện và thể tích
- Bài 1: Khái niệm về mặt tròn xoay – Mặt nón, mặt trụ
- Bài 2: Diện tích hình nón, thể tích khối nón
- Bài 3: Diện tích hình trụ, thể tích khối trụ
- Bài 4: Lý thuyết mặt cầu, khối cầu
- Bài 5: Mặt cầu ngoại tiếp, nội tiếp khối đa diện
- Bài 6: Ôn tập chương VI
- Bài 1: Hệ tọa độ trong không gian – Tọa độ điểm
- Bài 2: Tọa độ véc tơ
- Bài 3: Tích có hướng và ứng dụng
- Bài 4: Phương pháp giải các bài toán về tọa độ điểm và véc tơ
- Bài 5: Phương trình mặt phẳng
- Bài 6: Phương pháp giải các bài toán liên quan đến phương trình mặt phẳng
- Bài 7: Phương trình đường thẳng
- Bài 8: Phương pháp giải các bài toán về mối quan hệ giữa hai đường thẳng
- Bài 9: Phương pháp giải các bài toán về mặt phẳng và đường thẳng
- Bài 10: Phương trình mặt cầu
- Bài 11: Phương pháp giải các bài toán về mặt cầu và mặt phẳng
- Bài 12: Phương pháp giải các bài toán về mặt cầu và đường thẳng
CHƯƠNG 1: ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ HÀM SỐ
CHƯƠNG 2: HÀM SỐ LŨY THỪA, HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT
CHƯƠNG 3: NGUYÊN HÀM, TÍCH PHÂN VÀ ỨNG DỤNG
CHƯƠNG 4: SỐ PHỨC
CHƯƠNG 5: KHỐI ĐA DIỆN VÀ THỂ TÍCH CỦA CHÚNG
CHƯƠNG 6: MẶT CẦU, MẶT TRỤ, MẶT NÓN
CHƯƠNG 7: PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN
- Trang chủ
- Lý thuyết toán học
- Lý thuyết Toán 12
- CHƯƠNG 2: HÀM SỐ LŨY THỪA, HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT
- Logarit - Định nghĩa và tính chất
1. Định nghĩa
Với \(a > 0;a \ne 1,b > 0\) thì \({\log _a}b = N \Leftrightarrow b = {a^N}\). Số \({\log _a}b\) được gọi là lôgarit cơ số \(a\) của \(b\).
- Không có logarit của số âm, nghĩa là \(b > 0\).
- Cơ số phải dương và khác \(1\), nghĩa là \(0 < a \ne 1\).
- Theo định nghĩa logarit ta có:
\(\begin{array}{l} + ){\log _a}1 = 0;{\log _a}a = 1\\ + ){\log _a}{a^b} = b,\forall b \in R\\ + ){a^{{{\log }_a}b}} = b,\forall b > 0\end{array}\)
2. Tính chất
1/ Nếu \(a > 1;b,c > 0\) thì \({\log _a}b > {\log _a}c \Leftrightarrow b > c\).
2/ Nếu \(0 < a < 1;b,c > 0\) thì \({\log _a}b > {\log _a}c \Leftrightarrow b < c\).
3/ \({\log _a}\left( {bc} \right) = {\log _a}b + {\log _a}c\) \( \left( {0 < a \ne 1;b,c > 0} \right)\)
4/ \({\log _a}\left( {\dfrac{b}{c}} \right) = {\log _a}b - {\log _a}c\) \( \left( {0 < a \ne 1;b,c > 0} \right)\)
5/ \({\log _a}{b^n} = n{\log _a}b\left( {0 < a \ne 1;b > 0} \right)\)
6/ \({\log _a}\dfrac{1}{b} = - {\log _a}b\left( {0 < a \ne 1;b > 0} \right)\)
7/ \({\log _a}\sqrt[n]{b} = {\log _a}{b^{\frac{1}{n}}} = \dfrac{1}{n}{\log _a}b\) \( \left( {0 < a \ne 1;b > 0;n > 0;n \in {N^*}} \right)\)
8/ \({\log _a}b.{\log _b}c = {\log _a}c \Leftrightarrow {\log _b}c = \dfrac{{{{\log }_a}c}}{{{{\log }_a}b}}\) \(\left( {0 < a,b \ne 1;c > 0} \right)\)
9/ \({\log _a}b = \dfrac{1}{{{{\log }_b}a}} \Leftrightarrow {\log _a}b.{\log _b}a = 1\) \(\left( {0 < a,b \ne 1} \right)\)
10/ \({\log _{{a^n}}}b = \dfrac{1}{n}{\log _a}b\) \(\left( {0 < a \ne 1;b > 0;n \ne 0} \right)\)
Hệ quả:
a) Nếu \(a > 1;b > 0\) thì \({\log _a}b > 0 \Leftrightarrow b > 1;\) \({\log _a}b < 0 \Leftrightarrow 0 < b < 1\).
b) Nếu \(0 < a < 1;b > 0\) thì \({\log _a}b < 0 \Leftrightarrow b > 1;\) \({\log _a}b > 0 \Leftrightarrow 0 < b < 1\).
c) Nếu \(0 < a \ne 1;b,c > 0\) thì \({\log _a}b = {\log _a}c \Leftrightarrow b = c\).
Logarit thập phân \({\log _{10}}b = \log b\left( { = \lg b} \right)\) có đầy đủ tính chất của logarit cơ số \(a\).
Trang trước Mục Lục Trang sauCó thể bạn quan tâm:
- Số e và logarit tự nhiên
- Hàm số lũy thừa
- Hàm số logarit
- Hàm số mũ
- Phương trình logarit và một số phương pháp giải
Tài liệu
Toán 12: Tuyển tập các bài toán mũ và logarit hay và đặc sắc – Nguyễn Xuân Nhật
Toán 12: Trắc nghiệm hàm số mũ, hàm số logarit và một số bài toán liên quan
Toán 12 - Bài giảng trọng tâm Mũ - Logarit
Toán 12 - Chương 2 Lũy thừa - Mũ - Logarit
Toán 12 - CHUYÊN ĐỀ MŨ - LOGARIT
TopTừ khóa » Tính Chất Của Logarit Luỹ Thừa
-
Toán 12 - Bảng Công Thức Lũy Thừa, Hàm Số Mũ Và Logarit | 7scv
-
Các Công Thức Hàm Số Mũ Hàm Số Lũy Thừa Lôgarít Lớp 12
-
Tổng Hợp đầy đủ Bộ Công Thức Luỹ Thừa Cần Nhớ
-
Công Thức Logarit Và Công Thức Lũy Thừa Logarit – Giải Tích Lớp 12
-
Các Tính Chất Của Logarit, Tính Chất Và Các Dạng Toán Logarit
-
Lý Thuyết Khái Niệm Và Tính Chất Của Lôgarit Chi Tiết Và đầy đủ Nhất
-
Logarit Là Gì? Định Nghĩa, Tính Chất Và Các Công Thức Của Logarit
-
Logarit Là Gì? Tổng Hợp Các Công Thức Logarit đẩy đủ Nhất
-
Lũy Thừa Và Logarit, Bài Tập áp Dụng - Toán 12 - HayHocHoi
-
Lũy Thừa Là Gì? Tính Chất Của Lũy Thừa Với Số Mũ Thực, Căn Bậc N Và ...
-
Logarit Là Gì? Tính Chất Logarit Và Các Công Thức Logarit đầy đủ Nhất
-
Câu 2 Trang 90 SGK Giải Tích 12: Nêu Các Tính Chất Của Hàm Số Lũy ...
-
Lý Thuyết Hàm Số Mũ, Hàm Số Lôgarit | SGK Toán Lớp 12