Lý Thuyết Lũy Thừa Của Một Số Hữu Tỉ ( Tiếp Theo) | SGK Toán Lớp 7
Có thể bạn quan tâm
I. Các kiến thức cần nhớ
1. Lũy thừa với số mũ tự nhiên
Lũy thừa bậc n của một số hữu tỉ $x$ , kí hiệu là \({x^n}\), là tích của $n$ thừa số $x$ ($n$ là một số tự nhiên lớn hơn $1$ ): \({x^n} = \underbrace {x.x...x}_n\) \(\left( {x \in \mathbb{Q},n \in \mathbb{N},n > 1} \right)\)
Quy ước: \({x^1} = x;\) \({x^0} = 1\) \(\left( {x \ne 0} \right)\)
Ví dụ: \({2^3} = 2.2.2\)
Chú ý: Khi viết lũy thừa dưới dạng \(\dfrac{a}{b}\left( {a,\,b \in \mathbb{Z};\,b \ne 0} \right)\) , ta có \({\left( {\dfrac{a}{b}} \right)^n} = \dfrac{{{a^n}}}{{{b^n}}}\)
2. Tích và thương của hai lũy thừa cùng cơ số
+ Khi nhân hai lũy thừa cùng cơ số, ta giữ nguyên cơ số và cộng hai số mũ:
\({x^m}.{x^n} = {x^{m + n}}\) (với \(x\) là số hữu tỉ)
+ Khi chia hai lũy thừa cùng cơ số khác 0, ta giữ nguyên cơ số và lấy số mũ của lũy thừa bị chia trừ đi số mũ của lũy thừa chia: \({x^m}:{x^n} = {x^{m - n}}\)\(\left( {x \ne 0,m \ge n} \right)\)
Ví dụ: \({3^5}{.3^2} = {3^{5 + 2}} = {3^7};\)\({2^7}:{2^2} = {2^{7 - 2}} = {2^5}\).
3. Lũy thừa của lũy thừa
Khi tính lũy thừa của một lũy thừa, ta giữ nguyên cơ số và nhân hai số mũ: \({\left( {{x^m}} \right)^n} = {x^{m.n}}\)
Ví dụ: \({\left( {{2^3}} \right)^4} = {2^{3.4}} = {2^{12}}\).
4. Lũy thừa của một tích
Lũy thừa của một tích bằng tích các lũy thừa: \({\left( {x.y} \right)^n} = {x^n}.{y^n}\)
Ví dụ: \({\left( {2.3} \right)^2} = {2^2}{.3^2} = 4.9 = 36\)
5. Lũy thừa của một thương
Lũy thừa của một thương bằng thương các lũy thừa: \({\left( {\dfrac{x}{y}} \right)^n} = \dfrac{{{x^n}}}{{{y^n}}}\)\(\left( {y \ne 0} \right)\)
Ví dụ: \({\left( {\dfrac{2}{3}} \right)^3} = \dfrac{{{2^3}}}{{{3^3}}} = \dfrac{8}{{27}}\)
II. Các dạng toán thường gặp
Dạng 1: Tính tích các lũy thừa, thương các lũy thừa, lũy thừa của một tích và lũy thừa của một thương
Phương pháp:
Sử dụng định nghĩa lũy thừa và các công thức \({x^m}.{x^n} = {x^{m + n}}\); \({x^m}:{x^n} = {x^{m - n}}\)\(\left( {x \ne 0,m \ge n} \right);\)\({\left( {{x^m}} \right)^n} = {x^{m.n}};\) \({\left( {\dfrac{x}{y}} \right)^n} = \dfrac{{{x^n}}}{{{y^n}}}\)\(\left( {y \ne 0} \right).\)
Dạng 2: Tìm số mũ hoặc cơ số của một lũy thừa
Phương pháp:
Ta sử dụng tính chất nếu \({a^m} = {a^n}\) thì \(m = n\,\,\left( {a \ne 0;a \ne \pm 1} \right)\)
+ Nếu \({a^n} = {b^n}\) thì \(a = b\) nếu \(n\) lẻ;\(a = \pm b\) nếu \(n\) chẵn
Dạng 3: Tính giá trị của biểu thức
Phương pháp:
Thực hiện đúng thứ tự của phép tính: Lũy thừa, nhân, chia, cộng, trừ. Nếu có dấu ngoặc ta cần làm theo thứ tự: ngoặc tròn-ngoặc vuông-ngoặc nhọn.
Từ khóa » Công Thức Lũy Thừa Của Một Thương Lớp 7
-
[ Công Thức Lũy Thừa ] Của Một Tích, Lớp 7 , Lớp 12, Bậc 3
-
Công Thức Lũy Thừa Lớp 7 Chủ Đề: Lũy Thừa Của Một Số Hữu Tỉ ...
-
Hướng Dẫn Giải Toán Lớp 7 Chủ đề: Lũy Thừa Của Một Số Hữu Tỉ.
-
Lũy Thừa Của Một Số Hữu Tỉ - Các Phương Pháp Giải Toán 7
-
Lũy Thừa Của Một Số Hữu Tỉ
-
Công Thức Cách Tính Lũy Thừa Của Một Thương | Toán Học Lớp 6 7 8 9
-
LŨY THỪA CỦA MỘT TÍCH - YouTube
-
Lý Thuyết Lũy Thừa Của Một Số Hữu Tỉ Toán 7
-
Công Thức Lũy Thừa (của Một Tích, Một Thương, Số Hữu Tỉ) - Toán Lớp 12
-
Công Thức Lũy Thừa Lớp 7 Chủ Đề
-
Lũy Thừa Của Một Số Hữu Tỉ: Công Thức, Các Dạng Toán Và Bài Tập
-
Công Thức Lũy Thừa Của 1 Thương - Hoc24
-
BÀI 5 – 6 : LŨY THỪA CỦA MỘT SỐ HỮU TỈ | Toán Học Phổ Thông