Lý Thuyết Một Số Phương Trình Lượng Giác Thường Gặp
Có thể bạn quan tâm
I. PHƯƠNG TRÌNH BẬC NHẤT ĐỐI VỚI MỘT HÀM SỐ LƯỢNG GIÁC
1. Định nghĩa
Phương trình bậc nhất đối với một hàm số lượng giác là phương trình có dạng:
\(at + b = 0\,\,\,\,\,\,\left( 1 \right)\)
Trong đó, \(a,b\) là các hằng số \(\left( {a \ne 0} \right)\) và \(t\) là một trong các hàm số lượng giác.
2. Cách giải
Chia cả hai vế cho \(a\) ta được được \(\left( 1 \right)\) về phương trình lượng giác cơ bản.
Ví dụ:
\(\begin{array}{l}2\cos x - \sqrt 3 = 0\\ \Leftrightarrow 2\cos x = \sqrt 3 \\ \Leftrightarrow \cos x = \frac{{\sqrt 3 }}{2} = \cos \frac{\pi }{6}\\ \Leftrightarrow x = \pm \frac{\pi }{6} + k2\pi \end{array}\)
3. Phương trình đưa về phương trình bậc nhất đối với một hàm số lượng giác
Ví dụ:
\(\begin{array}{l}5\sin x - \sin 2x = 0\\ \Leftrightarrow 5\sin x - 2\sin x\cos x = 0\\ \Leftrightarrow \sin x\left( {5 - 2\cos x} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}\sin x = 0\\5 - 2\cos x = 0\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}\sin x = 0\\\cos x = \frac{5}{2}\left( {VN\,vi\,\frac{5}{2} > 1} \right)\end{array} \right.\\ \Leftrightarrow x = k\pi ,k \in Z\end{array}\)
II. PHƯƠNG TRÌNH BẬC HAI ĐỐI VỚI MỘT HÀM SỐ LƯỢNG GIÁC
1. Định nghĩa
Phương trình bậc hai đối với một hàm số lượng giác là phương trình có dạng
\(a{t^2} + bt + c = 0\,\,\left( {a \ne 0} \right)\)
Trong đó \(a,b,c\) là các hằng số và \(t\) là một trong số các hàm số lượng giác.
2. Cách giải
- Đặt ẩn phụ và điều kiện cho ẩn (nếu có).
- Giải phương trình với ẩn phụ.
- Từ đó giải phương trình lượng giác cơ bản.
Ví dụ:
\({\tan ^2}x - \tan x - 2 = 0\,\,\left( 1 \right)\)
Đặt \(t = \tan x\) thì (1) là:
\({t^2} - t - 2 = 0 \Leftrightarrow \left[ \begin{array}{l}t = - 1\\t = 2\end{array} \right.\)
\(\begin{array}{l} \Rightarrow \left[ \begin{array}{l}\tan x = - 1\\\tan x = 2\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = - \frac{\pi }{4} + k\pi \\x = \arctan 2 + k\pi \end{array} \right.,k \in Z\end{array}\)
III. PHƯƠNG TRÌNH BẬC NHẤT ĐỐI VỚI \(\sin x\) VÀ \(\cos x\)
Xét phương trình \(a\sin x + b\cos x = c\)
+) Chia hai vế phương trình cho \(\sqrt {{a^2} + {b^2}} \)
+) Gọi \(α\) là góc lượng giác tạo bởi chiều dương của trục hoành với vecto \(\overrightarrow {OM} = (a;b)\) thì phương trình trở thành một phương trình đã biết cách giải:
\(\sin (x + \alpha ) = {c \over {\sqrt {{a^2} + {b^2}} }}\)
Chú ý : Để phương trình \(\sin (x + a) = {{{c^2}} \over {\sqrt {{a^2} + {b^2}} }}\) có nghiệm, điều kiện cần và đủ là
\(\left| {{{{c^2}} \over {\sqrt {{a^2} + {b^2}} }}} \right| \le 1\)
\(\Leftrightarrow \left| c \right| \le \sqrt {{a^2} + {b^2}} \)
\(\Leftrightarrow {c^2} \le {a^2} + {b^2}\)
Đó cũng là điều kiện cần và đủ để phương trình \(a\sin x + b\cos x = c\) có nghiệm.
Loigiaihay.com
Từ khóa » Hằng Số Lượng Giác
-
Các Công Thức Lượng Giác Toán 10 Đầy Đủ Nhất - Kiến Guru
-
Xem Bảng Công Thức Lượng Giác Đầy Đủ - MathVn.Com
-
Bảng Công Thức Lượng Giác Sin Cos, Cơ Bản, Nâng Cao đầy đủ Lớp 9 ...
-
Lượng Giác – Wikipedia Tiếng Việt
-
Công Thức Lượng Giác đầy đủ Nhất Cho Lớp 9, Lớp 10, Lớp 11
-
Bảng Công Thức Lượng Giác Lớp 9, Lớp 10, Lớp 11 Chính Xác 100%
-
Bảng Các Công Thức Lượng Giác Lớp 10, 11, 12 đầy đủ Nhất
-
CongThucLuongGiac: Bảng Công Thức Lượng Giác Và Cách Học ...
-
Lý Thuyết Và Các Công Thức Lượng Giác Đầy Đủ Nhất - Marathon
-
Bảng Các Công Thức Lượng Giác Lớp 9, 10, Lớp 11 Đầy Đủ
-
Các Hằng đẳng Thức Lượng Giác Cơ Bản - 123doc
-
Tổng Quan Về Hàm Số Lượng Giác Và Phương Trình Hàm Số Lượng Giác
-
Tổng Hợp 50 Công Thức Lượng Giác Cơ Bản - Nâng Cao Giúp Làm đề ...