Lý Thuyết Nhắc Lại Và Bổ Sung Các Khái Niệm Về Hàm Số Hay, Chi Tiết
Có thể bạn quan tâm
- Siêu sale sách Toán - Văn - Anh Vietjack 29-11 trên Shopee mall
Bài viết Lý thuyết Nhắc lại và bổ sung các khái niệm về hàm số lớp 9 hay, chi tiết giúp bạn nắm vững kiến thức trọng tâm Nhắc lại và bổ sung các khái niệm về hàm số.
- Trắc nghiệm Bài 1 (có đáp án): Nhắc lại và bổ sung các khái niệm về hàm số
- Lý thuyết khái niệm về hàm số
- Bài tập tự luận khái niệm về hàm số
Lý thuyết Nhắc lại và bổ sung các khái niệm về hàm số lớp 9 (hay, chi tiết)
Bài giảng: Bài 1: Nhắc lại và bổ sung các khái niệm về hàm số - Cô Phạm Thị Huệ Chi (Giáo viên VietJack)
A. Lý thuyết
I. ĐỊNH NGHĨA HÀM SỐ
Quảng cáo+ Nếu đại lượng y phụ thuộc vào một đại lượng x thay đổi sao cho mỗi giá trị của x, ta luôn xác định được chỉ một giá trị tương ứng của y thì y được gọi là hàm số của x và x gọi là biến số
+ Hàm số có thể được cho bằng bảng hoặc bằng công thức,..
Ví dụ:
y là hàm số của x được cho dưới dạng bảng:
x | 2 | 1/2 | 3 | 1 |
y | 4 | 8 | 1/6 | 1 |
y là hàm số của x được cho dưới dạng công thức:
y = 2x; y = x + 2; y = x
+ Hàm số thường được ký hiệu bởi những chữ f, g, h, ... chẳng hạn khi y là hàm số của biến số x, ta viết y = f(x) hoặc y = g(x),….
+ f(a) là giá trị của hàm số y = f(x) tại x = a. Khi hàm số y được cho bởi công thức y = f(x), muốn tính giá trị f(a) của hàm số tại x = a, ta thay x = a vào biểu thức f(x) rồi thực hiện các phép tính trong biểu thức.
Ví dụ:
Ta có hàm số y = f(x) = x + 2. Khi đó f(1) = 1 + 2 = 3
+ Khi x thay đổi mà y luôn nhận một giá trị không đổi thì y được gọi là một hàm hằng .
Ví dụ:
Ta có y = f(x) = 1. Khi đó với giá trị nào của x thì y = 1 → khi đó y là hàm hằng.
II. ĐỒ THỊ CỦA HÀM SỐ
Tập hợp các điểm biểu diễn các cặp giá trị tương ứng (x; f(x)) trên mặt phẳng tọa độ được gọi là đồ thị của hàm số y = f(x).
Quảng cáoVí dụ:
Hình bên là đồ thị của hàm số y = f(x) = x + 4.
Các cặp giá trị tương ứng trên mặt phẳng tọa độ là A(-4; 0); B(0; 4).
III. HÀM SỐ ĐỒNG BIẾN, HÀM SỐ NGHỊCH BIẾN.
Cho hàm số y = f(x) xác định với mọi giá trị của x thuộc R
+ Nếu giá trị của biến x tăng lên mà giá trị của f(x) tương ứng cũng tăng lên thì hàm số y = f(x) được gọi là hàm số đồng biến trên R (gọi tắt là hàm số đồng biến).
+ Nếu giá trị của biến x tăng lên mà giá trị của f(x) tương ứng giảm đi thì hàm số y = f(x) được gọi là hàm số nghịch biến trên R (gọi tắt là hàm số nghịch biến).
Nói cách khác, cho hàm số y = f(x) xác định trên tập số thực R. Với x1, x2 ∈ R ta có:
+ Nếu x1 < x2 mà f(x1) < f(x2) thì hàm số đồng biến.
+ Nếu x1 < x2 mà f(x1) > f(x2) thì hàm số nghịch biến.
Ví dụ:
Cho hàm số y = x + 2, xác định với ∀ ∈ R
Ta có: x1 < x2 ⇒ x1 + 2 < x2 + 2 hay f(x1) < f(x2) nên hàm số y = x + 2 đồng biến trên R.
B. Bài tập tự luận
Câu 1: Xác định hàm số f(x) biết rằng f(x + 1) = x2 - 2x + 3
Lời giải:
Đặt x + 1 = t thì x = t - 1
Khi đó f(t) = (t - 1)2 - 2(t - 1) + 3 = t2 - 4t + 6
Vậy f(x) = x2 - 4x + 6
Quảng cáoCâu 2: Chứng minh công thức tính khoảng cách d giữa hai điểm A(x1; y1) và B(x2; y2) là d =
Lời giải:
Gọi c (x2; y1)
+ Khoảng cách giữa hai điểm x1, x2 trên trục hoành chính là AC = |x2 - x1|
+ Khoảng cách giữa hai diểm y1, y2 trên trục tung chính là BC = |y2 - y1|
Do tam giác ABC vuông tại C nên AB2 = AC2 + BC2 = (x2 - x1)2 + (y2 - y1)2
Khi đó: AB = d =
Quảng cáoXem thêm lý thuyết và các dạng bài tập Toán lớp 9 có lời giải hay khác:
- Lý thuyết Bài 2: Hàm số bậc nhất (hay, chi tiết)
- Trắc nghiệm Bài 2 (có đáp án): Hàm số bậc nhất
- Lý thuyết Bài 3: Đồ thị của hàm số y = ax + b (hay, chi tiết)
- Trắc nghiệm Bài 3 (có đáp án): Đồ thị của hàm số y = ax + b
- Lý thuyết Bài 4: Đường thẳng song song và đường thẳng cắt nhau (hay, chi tiết)
- Trắc nghiệm Bài 4 (có đáp án): Đường thẳng song song và đường thẳng cắt nhau
- Tài liệu cho giáo viên: Giáo án, powerpoint, đề thi giữa kì cuối kì, đánh giá năng lực, thi thử THPT, HSG, chuyên đề, bài tập cuối tuần..... độc quyền VietJack, giá hợp lí
Tủ sách VIETJACK luyện thi vào 10 cho 2k10 (2025):
- Giải mã đề thi vào 10 theo đề Hà Nội, Tp. Hồ Chí Minh (300 trang - từ 99k/1 cuốn)
- Bộ đề thi thử 10 chuyên (120 trang - từ 99k/1 cuốn)
- Cấp tốc 7,8,9+ Toán Văn Anh thi vào 10 (400 trang -từ 119k)
- Hơn 20.000 câu trắc nghiệm Toán,Văn, Anh lớp 9 có đáp án
ĐỀ THI, GIÁO ÁN, SÁCH ĐỀ THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 9
Bộ giáo án, bài giảng powerpoint, đề thi dành cho giáo viên và sách dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official
Tổng đài hỗ trợ đăng ký : 084 283 45 85
Từ khóa » Khi Nào Y được Gọi Là Hàm Số Của X
-
Khái Niệm Hàm Số
-
Lý Thuyết Nhắc Lại Và Bổ Sung Các Khái Niệm Về Hàm Số
-
Với Hai đại Lượng X Và Y, Khi Nào Y Là Hàm Số Của X ...
-
Lý Thuyết Về Hàm Số, 1. Khái Niệm.Nếu đại Lượng Y Phụ Thuộc Vào ...
-
Bài 1 : KHÁI NIỆM HÀM SỐ | Toán Học Phổ Thông
-
Khái Niệm Hàm Số: Nếu đại Lượng Y Phụ Thuộc Vào ...
-
Hàm Số – Wikipedia Tiếng Việt
-
Hàm Số Và Những định Nghĩa Cơ Bản Nhất?
-
Y Có Là Hàm Số Của X Không Vì Sao
-
Nhắc Lại Và Bổ Sung Khái Niệm Về Hàm Số Và đồ Thị Hàm Số
-
Toán 9 - Khái Niệm Hàm Số - Blog Lớp Học Tích Cực
-
Khi Nào đại Lượng Y Là Hàm Số Của đại Lượng X - Học Tốt
-
Nhắc Lại Và Bổ Sung Các Khái Niệm Về Hàm Số - Đại Số 9 - Toán Lớp 9