Lý Thuyết Tích Vô Hướng Của Hai Vectơ | SGK Toán Lớp 10
Có thể bạn quan tâm
1. Định nghĩa
Cho hai vectơ \(\vec{a}\) và \(\vec{b}\) khác vectơ \(\vec{0}\). Tích vô hướng của \(\vec{a}\) và \(\vec{b}\) là một số, được ký hiệu là \(\vec{a}\).\(\vec{b}\) và xác định bởi công thức sau :
\(\vec{a} .\vec{b} = |\vec{a}|.|\vec{b}|\cos(\vec{a}, \vec{b})\)
2. Các tính chất của tích vô hướng
Người ta chứng minh được các tính chất sau đây của tích vô hướng :
Với ba vectơ \(\vec{a}\), \(\vec{b}\), \(\vec{c}\) bất kì và mọi số thực \(k\) ta có :
\(\vec{a}\) .\(\vec{b}\) = \(\vec{b}\).\(\vec{a}\) (tính chất giao hoán)
\(\vec{a}\).( \(\vec{b}\) + \(\vec{c}\)) = \(\vec{a}\). \(\vec{b}\) + \(\vec{a}\). \(\vec{c}\) ( tính chất phân phối)
\((k.\vec{a}\)).\(\vec{b}\) = \(k(\vec{a}\), \(\vec{b}\)) = \(\vec{a}\)\(.(k\vec{b}\))
3. Biểu thức tọa độ của tích vô hướng
Trên mặt phẳng tọa độ \((0; \vec{i}; \vec{j})\), cho hai vec tơ \(\overrightarrow a =({a_1};{a_2})\), \(\overrightarrow b = ({b_1};{b_2})\). Khi đó tích vô hướng \(\vec{a}\) và \(\vec{b}\) là:
\(\overrightarrow a .\overrightarrow b = {a_1}{b_1} + {a_2}{b_2}\)
Nhận xét: Hai vectơ \(\overrightarrow a =({a_1};{a_2})\), \(\overrightarrow b = ({b_1};{b_2})\) khác vectơ \(\vec{0}\) vuông góc với nhau khi và chỉ khi:
$${a_1}{b_1} + {a_2}{b_2} = 0$$
4. Ứng dụng
a) Độ dài của vectơ: Độ dài của vec tơ \(\overrightarrow a =({a_1};{a_2})\) được tính theo công thức:
\(|\vec{a}| = \sqrt{a_{1}^{2}+ {a_{2}}^{2}}\)
b) Góc giữa hai vec tơ: Từ định nghĩa tích vô hướng của hai vec tơ ta suy ra nếu \(\overrightarrow a =({a_1};{a_2})\), \(\overrightarrow b = ({b_1};{b_2})\) khác vectơ \(\vec{0}\) thì ta có:
\(\cos(\vec{a}, \vec{b}) = \dfrac{\vec{a}.\vec{b}}{|\vec{a}|.|\vec{b}|} = \dfrac{{a_{1}.b_{1}+ a_{2}.b_{2}}}{\sqrt{{a_{1}}^{2}+{a_{2}}^{2}}.\sqrt{{b_{1}}^{2}+{b_{2}}^{2}}}\)
c) Khoảng cách giữa hai điểm: Khoảng cách giữa hai điểm \(A({x_A};{y_A}),B({x_B};{y_B})\) được tính theo công thức :
\(AB=\sqrt{({x_{B}-x_{A}})^{2}+({y_{B}-y_{A})}^{2}}\)\

Loigiaihay.com
Từ khóa » Tích Vô Hướng Của Hai Véctơ A Và B Cùng Khác 0 Là Số âm Khi
-
Tích Vô Hướng Của Hai Véctơ \(\overrightarrow A \) Và ... - HOC247
-
Cho Hai Vectơ A Và B đều Khác Vecto 0. Khi Nào Thì Tích Vô Hướng ...
-
Cho Hai Vectơ A Và B đều Khác Vecto 0. Khi Nào Thì Tích Vô Hướng ...
-
Sách Giải Bài Tập Toán Lớp 10 Bài 2: Tích Vô Hướng Của Hai Vectơ
-
Bài Tập Tích Vô Hướng Của Hai Vecto
-
Cho Hai Vectơ A→ Và B→ Cùng Khác 0→ . Tích Vô Hướng A→. B→ Là ...
-
Cho Hai Vectơ A Và Vectơ B đều Khác Vectơ 0. Tích Vô Hướng →a.→b
-
Tích Vô Hướng Của Hai Vectơ: Lý Thuyết Và Bài Các Dạng Bài Tập ...
-
Giải Toán 10 Bài 2. Tích Vô Hướng Cảu Hai Vectơ
-
Tích Vô Hướng – Wikipedia Tiếng Việt
-
Giải Bài Tập Toán 10 Bài 2. Tích Vô Hướng Của Hai Vectơ
-
Tích Vô Hướng Của Hai Vectơ - O₂ Education
-
Tích Vô Hướng Của Hai Vecto - Tài Liệu - 123doc
-
Tích Vô Hướng Của Hai Vectơ