Lý Thuyết Tính Chất đường Trung Trực Của đoạn Thẳng, Của Tam Giác ...

Một sản phẩm của Tuyensinh247.com

Tính chất đường trung trực của tam giác

I. Các kiến thức cần nhớ

1. Tính chất đường trung trực của một đoạn thẳng

Định nghĩa: Đường trung trực của một đoạn thẳng là đường thẳng vuông góc với đoạn thẳng ấy tại trung điểm của nó.

Hình vẽ trên, $d$ là đường trung trực của đoạn thẳng $AB.$

Định lí 1: Điểm nằm trên đường trung trực của một đoạn thẳng thì cách đều hai mút của đoạn thẳng đó.

Định lí 2: Điểm cách đều hai mút của đoạn thẳng thì nằm trên đường trung trực của đoạn thẳng đó.

$MA = MB$ \( \Rightarrow \) M thuộc đường trung trực của $AB.$

Nhận xét:

Tập hợp các điểm cách đều hai mút của một đoạn thẳng là đường trung trực của đoạn thẳng đó.

2. Tính chất ba đường trung trực của tam giác

Định lí 1: Trong một tam giác cân, đường trung trực của cạnh đáy đồng thời là đường trung tuyến ứng với cạnh đáy này.

Định lí 2: Ba đường trung trực của một tam giác cùng đi qua một điểm. Điểm này cách đều ba đỉnh của tam giác đó.

Trên hình, điểm $O$ là giao điểm các đường trung trực của \(\Delta ABC.\) Ta có \(OA = OB = OC.\) Điểm $O$ là tâm đường tròn ngoại tiếp \(\Delta ABC.\)

II. Các dạng toán thường gặp

Dạng 1: Chứng minh đường trung trực của một đoạn thẳng

Phương pháp:

Để chúng minh \(d\) là đường trung trực của đoạn thẳng \(AB\), ta chứng minh \(d\) chứa hai điểm cách đều \(A\) và \(B\) hoặc dùng định nghĩa đường trung trực.

Dạng 2: Chứng minh hai đoạn thẳng bằng nhau

Phương pháp:

Ta sử dụng định lý: “Điểm nằm trên đường trung trực của một đoạn thẳng thì cách đều hai mút của đoạn thẳng đó.”

Dạng 3: Bài toán về giá trị nhỏ nhất

Phương pháp:

- Sử dụng tính chất đường trung trực để thay độ dài một đoạn thẳng thành độ dài một đoạn thẳng khác bằng nó.

- Sử dụng bất đẳng thức tam giác để tìm giá trị nhỏ nhất.

Dạng 4: Xác định tâm đường tròn ngoại tiếp tam giác

Phương pháp:

Sử dụng tính chất giao điểm các đường trung trực của tam giác

Định lý: Ba đường trung trực của một tam giác cùng đi qua một điểm. Điểm này cách đều ba đỉnh của tam giác đó.

Dạng 5: Bài toán liên quan đến đường trung trực đối với tam giác cân

Phương pháp:

Chú ý rằng trong tam giác cân, đường trung trực của cạnh đáy đồng thời là đường trung tuyến , đường phân giác ứng với cạnh đáy này.

Dạng 6: Bài toán liên quan đến đường trung trực đối với tam giác vuông

Phương pháp:

Ta chú ý rằng: Trong tam giác vuông, giao điểm các đường trung trực là trung điểm cạnh huyền

Luyện bài tập vận dụng tại đây!

  • Báo lỗi
  • Tải về

    Từ khóa » Khái Niệm đường Trung Trực Trung Tuyến