Lý Thuyết Tính Chất đường Trung Trực Của đoạn Thẳng, Của Tam Giác ...
Có thể bạn quan tâm
Tính chất đường trung trực của tam giác
I. Các kiến thức cần nhớ
1. Tính chất đường trung trực của một đoạn thẳng
Định nghĩa: Đường trung trực của một đoạn thẳng là đường thẳng vuông góc với đoạn thẳng ấy tại trung điểm của nó.
Hình vẽ trên, $d$ là đường trung trực của đoạn thẳng $AB.$
Định lí 1: Điểm nằm trên đường trung trực của một đoạn thẳng thì cách đều hai mút của đoạn thẳng đó.
Định lí 2: Điểm cách đều hai mút của đoạn thẳng thì nằm trên đường trung trực của đoạn thẳng đó.
$MA = MB$ \( \Rightarrow \) M thuộc đường trung trực của $AB.$
Nhận xét:
Tập hợp các điểm cách đều hai mút của một đoạn thẳng là đường trung trực của đoạn thẳng đó.
2. Tính chất ba đường trung trực của tam giác
Định lí 1: Trong một tam giác cân, đường trung trực của cạnh đáy đồng thời là đường trung tuyến ứng với cạnh đáy này.
Định lí 2: Ba đường trung trực của một tam giác cùng đi qua một điểm. Điểm này cách đều ba đỉnh của tam giác đó.
Trên hình, điểm $O$ là giao điểm các đường trung trực của \(\Delta ABC.\) Ta có \(OA = OB = OC.\) Điểm $O$ là tâm đường tròn ngoại tiếp \(\Delta ABC.\)
II. Các dạng toán thường gặp
Dạng 1: Chứng minh đường trung trực của một đoạn thẳng
Phương pháp:
Để chúng minh \(d\) là đường trung trực của đoạn thẳng \(AB\), ta chứng minh \(d\) chứa hai điểm cách đều \(A\) và \(B\) hoặc dùng định nghĩa đường trung trực.
Dạng 2: Chứng minh hai đoạn thẳng bằng nhau
Phương pháp:
Ta sử dụng định lý: “Điểm nằm trên đường trung trực của một đoạn thẳng thì cách đều hai mút của đoạn thẳng đó.”
Dạng 3: Bài toán về giá trị nhỏ nhất
Phương pháp:
- Sử dụng tính chất đường trung trực để thay độ dài một đoạn thẳng thành độ dài một đoạn thẳng khác bằng nó.
- Sử dụng bất đẳng thức tam giác để tìm giá trị nhỏ nhất.
Dạng 4: Xác định tâm đường tròn ngoại tiếp tam giác
Phương pháp:
Sử dụng tính chất giao điểm các đường trung trực của tam giác
Định lý: Ba đường trung trực của một tam giác cùng đi qua một điểm. Điểm này cách đều ba đỉnh của tam giác đó.
Dạng 5: Bài toán liên quan đến đường trung trực đối với tam giác cân
Phương pháp:
Chú ý rằng trong tam giác cân, đường trung trực của cạnh đáy đồng thời là đường trung tuyến , đường phân giác ứng với cạnh đáy này.
Dạng 6: Bài toán liên quan đến đường trung trực đối với tam giác vuông
Phương pháp:
Ta chú ý rằng: Trong tam giác vuông, giao điểm các đường trung trực là trung điểm cạnh huyền
Luyện bài tập vận dụng tại đây!
Từ khóa » Khái Niệm đường Trung Trực Trung Tuyến
-
Đường Trung Tuyến Là Gì?
-
Thế Nào Là đường Trung Tuyến, đường Trung Trực, đường Phân Giác ...
-
Nêu định Nghĩa Của Các đường Trung Tuyến, đường Phân Giác ...
-
Đường Trung Trực Là Gì?
-
Đường Trung Trực – Wikipedia Tiếng Việt
-
Đường Trung Trực Là Gì? - Luật Hoàng Phi
-
Đường Trung Trực: Định Nghĩa, Tính Chất Và Bài Tập - Ôn Tập Toán Lớp 7
-
Tính Chất đường Trung Trực Của đoạn Thẳng, Của Tam Giác
-
Khái Niệm,tính Chất,hình,kí Hiệu Các đường Trung Tuyến ... - MTrend
-
Đường Trung Tuyến Là Gì, Tính Chất Và Ví Dụ Minh Họa - TopLoigiai
-
Tổng Hợp Các đường Trong Tam Giác - Kiến Thức Dành Cho Học Sinh
-
Đường Trung Tuyến Là Gì? Tính Chất, Công Thức Tính đường Trung Tuyến
-
Lý Thuyết ôn Tập Chương 7 Toán 7
-
Tính Chất 3 Đường Trung Tuyến Của Tam Giác Vuông, Vuông Cân ...